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To my former and future students.
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Introduction

In this book, scattering analysis is applied to many seemingly different things, including but not in
any way limited to:
● Radar: The atomic bomb may have ended WWII, but radar won it. Radar kept Britain in the war

long enough for the arsenal of democracy to get fully into the game. After the Cold War ended,
radar-scattering folks ended up making video games realistic and cell phones reliable.

● Sonar: For decades, humans have been hard at work trying to duplicate the innate abilities of
echolocating mammals like dolphins, whales, and bats. Acoustic scattering is more than just a
scalar version of electromagnetics.

● Medical diagnostics: Ultrasound images, mammograms, etc. are 2D “cuts” of three-
dimensional anatomy. Doctors are expert at interpreting them, but the diagnosis is still quite
subjective. Machine learning can assist doctors by highlighting suspicious features in signals.

● Structural flaw detection: Technicians are not as highly trained at diagnosis as are doctors,
plus there is no standard “anatomy” and the structure can’t tell where it hurts. For many appli-
cations, machine learning can take the lead by automatically identifying flaws that could lead to
structural failure.

● On-line inspection: Process engineers don’t want to interpret images. They want the instru-
mentation to give a green light if the process is OK, and a red light if it’s out of spec. Automatic,
real-time interpretation of complex process-monitoring signals is now doable.

● Intelligent robotics: The key to useful robots is a combination of imaging sensors and the
on-board intelligence to interpret them in real time. You want to simply tell the robot to turn
left at the big tree, not feed it GPS coordinates.

The modeling techniques, and applications of them, we’ll be discussing allow one to implement
new and better measurements with both novel instrumentation and artificial intelligence that auto-
mates the interpretation of the various (and multiple) imaging data streams. There’s rather a lot of
high-level math, of course, but that’s good for us because we’re not the sort of laymen who Einstein
said “have a secret grudge against arithmetic.”

The underlying mathematical and computational methods we’ll discuss transcend any particular
application(s). If you can do radar, you can do sonar, seismology, nondestructive evaluation, and
so on. That turns out to be pretty important because lifequakes come along about every six to eight
years, and any particular thing that you happen to be expert at might go from hot to not in an instant.
That has happened to me repeatedly since 1986 and so all these years later, I’ve accumulated a
seemingly diverse set of subject matter expertise with a mindset of always being on the lookout for
new applications of what I know and can do.



xviii Introduction

It has recently come to my attention that the current cohort of graduate students are Gen Z, who
did at least some college via Zoom and are fundamentally different from the generations that came
before them. They’ve never not had all the world’s knowledge in a portable, semidisposable device
that they carry with them at all times. One goal of this book is to help connect this generation
with the vast scientific literature that has long existed in musty libraries but now is available for
download at places like Internet Archive, but only if you know what sources to seek out and use as
the basis for your personal reference library. It’s also important to pay homage to those scientists
and mathematicians who spent their professional lives developing tools that you can now use to
solve problems. Tea will be spilled; the index is designed to allow a quick Hollywood read.

This book is based on a multisemester sequence of graduate classes that I’ve been giving for three
decades now. I started by typing up my own hand-written notes, and as I was going along, many of
my students made plots for this book as exercises in class. Thanks for that, BTW. I’ve also drawn
examples whenever possible from the dissertation research of my graduate students, with discus-
sion of the real-world problems that motivated their research. I’ve deliberately included anecdotes
of the sorts of issues that can arise in collaborative research that includes multiple investigators
and multiple institutions. Much of our work is done in close collaboration with small companies,
several of whom I’ve shepherded from de novo startups on through VC investment or M&A, but
I’ve always avoided taking any equity stake so I’d be at arm’s length and could focus on doing what’s
best for my students’ career progression.

This isn’t intended to be a comprehensive reference work on scattering for radar, sonar, etc.
Indeed, I’ve deliberately downplayed techniques that aren’t all that important now that ubiquitous
computing of sufficient power means we can simulate realistic 3D scattering scenarios. I do try to
point the reader to classic texts where those mature areas of research are discussed in great detail
by those notables who developed the methods, doing the best they could with the computational
power they had available. Once upon a time, of course, computer was a job title.
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Background

1.1 Some History

As a child you probably played the swimming pool game of tag where you close your eyes and then
repeatedly call out “Marco” with the response “Polo” each time from the other players by which
you’re supposed to locate them and tag someone who is then it. Biurnal hearing allowed you to tell
which direction to lunge, and you could guesstimate who was nearby and who was farther away.
The game is a little trickier to play at indoor pools because the acoustic scattering from walls and
such can be confounding.

Marco Polo may or may not have traveled from Venice to China, although he did spend a couple of
decades travelling and trading along the Silk Road, where he would certainly have picked up a lot of
information, such as how to make power smoothies, and trade goods like yak hair [1]. He mistook
rhinos for chubby unicorns, which is now a meme. In his book, he also claimed to have been besties
with the emperor Kublai Khan. Christopher Columbus brought a copy of that book along with him
on his 1492 trip to the Orient, but it turned out to be unhelpful. Navigating the world based on maps
pieced together from stories of other travelers is always going to be a bit iffy. Fortunately, over the
last century or so there has been a rapid development of navigation technologies.

The Submarine Signal Company, established in 1901 in Boston, was the first commercial
enterprise organized to conduct underwater sound research and to develop equipment to be
used for increasing the safety of navigation [2]. “Our invention relates to a method of ringing
or sounding a bell and also to a system and apparatus for transmitting intelligence between
ships at sea and between the shore and any ship by means of sound-signals made in the water at
the transmitting-station by electrical means. These sounds are picked up from the water at the
receiving-station by means of electrical or mechanical devices.” The initial product line included
underwater bells for shore-based stations, buoys, and lightships as well as encased microphones
for sound detection on the ships [3, 4].

1.1.1 The Titanic Disaster

In 1912, the unsinkable Titanic struck an iceberg and sank [5]. Not long after, Sir Hiram Maxim
self-published a short book and submitted a letter to Scientific American [6] in which he asked,
“Has Science reached the end of its tether? Is there no possible means of avoiding such a deplorable
loss of life and property? Thousands of ships have been lost by running ashore in a fog, hundreds by
collisions with other ships or with icebergs, nearly all resulting in great loss of life and property.”
Maxim noted that collisions often take place in a fog at night when a searchlight is worse than

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.



2 1 Background

useless because it just illuminates the haze. It was (becoming) known that bats used some form
of sound that was outside the range of human hearing in order to echolocate and feed, but he
thought it was infrasound rather than ultrasound [7, 8]. Maxim described a concept for a very
low-frequency directional steam whistle or siren that could be used to (echo)locate icebergs during
foggy nights when collisions were most likely to occur. Whether Maxim’s patented apparatus would
have been effective at preventing collisions at sea is a question that’s a little like whether Da Vinci’s
contraptions would have flown. He got the general idea right, and can be credited with stimulating
the imaginations of those who subsequently worked out all the engineering details.

His sketch, reproduced as Figure 1.1, is quite remarkable. The key idea is that the time delay
of the echoes determines distance because the speed of sound is known, but more importantly,
the shape of the echoes gives information about the object that is returning those echoes. Analysis
of those echo waveforms can, in principle, tell the difference between a ship and an iceberg, and
even differentiate large and small icebergs. He even illustrates how clutter affects the echoes differ-
ently from backscattering targets. Science has not, in fact, reached the end of its tether, even after
a century of further development. This is exactly how radar, sonar, and ultrasound work [9, 10].

Maxim’s suggested apparatus embodies a modified form of “siren,” through which high-pressure
steam can be made to flow in order to produce sound-waves with about 14–15 vibrations per sec-
ond, and consequently not coming within the range of the human ear. These waves, it is asserted,
would be capable of traveling great distances, and if they struck against a body ahead of the ship,
they would be reflected toward their source, “echo waves” being formed [11]. This self-published
pamphlet was discussed in [12].

1.1.2 Das Unterseeboot

The first submarine to successfully dive, cruise below the water surface, and emerge to the sur-
face again on its own was the Sub Marine Explorer of the German American engineer Julius H.
Kroehl, which already comprised many technologies that are still essential to modern submarines
[13]. The first submarine built in Germany, the three-man Brandtaucher, sank to the bottom of
Kiel harbor on 1 February 1851 during a test dive [14]. The Confederate States of America fielded
several human-powered submarines, including CSS H. L. Hunley. The first Confederate subma-
rine was the 30-foot-long Pioneer, which sank a target schooner using a towed mine during tests
on Lake Pontchartrain, but it was not used in combat. It was scuttled after New Orleans was cap-
tured and in 1868 was sold for scrap, but the similar Bayou St. John submarine is preserved in the
Louisiana State Museum. CSS Hunley was intended for attacking Union ships that were blockading
Confederate seaports. The submarine had a long pole with an explosive charge in the bow called
a spar torpedo. The sub had to approach an enemy vessel, attach the explosive, move away, and
then detonate it. It was extremely hazardous to operate, and had no air supply other than what was
contained inside the main compartment. On two occasions, the sub sank; on the first occasion, half
the crew died, and on the second, the entire eight-man crew (including Hunley himself) drowned.
On 17 February 1864, CSS Hunley sank USS Housatonic off the Charleston Harbor, the first time a
submarine successfully sank another ship, although it sank in the same engagement shortly after
signaling its success. Submarines did not have a major impact on the outcome of the American
War Between the States,1 but did portend their coming importance to naval warfare and increased
interest in their use in naval warfare.2

1 A more accurate name is War of the Rebellion. As we reevaluate our history, monuments, and heroes, naming
things properly is important [15].
2 See, for example, https://en.wikipedia.org/wiki/History_of_submarines.

https://en.wikipedia.org/wiki/History_of_submarines
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You almost certainly know Captain Nemo’s submarine Nautilus from Jules Verne’s Twenty
Thousand Leagues Under the Sea (1870), but you may not have read The Mysterious Island (1874)
or know that Nemo’s fictional craft was named after Robert Fulton’s real-life submarine Nautilus
(1800). Verne was inspired by the French Navy submarine Plongeur, a model of which he saw
at the 1867 Exposition Universelle. The fictional Nautilus was battery powered, not nuclear like
today’s boomers that can travel way more than 20,000 leagues (not quite three laps around the
earth) under the sea, sneaking around for six months at a time just in case they need to destroy
the world because reasons.

The Battle of Hampton Roads was the most important naval battle of the American Civil War.
It was fought over two days in March 1862, where the Elizabeth and Nansemond rivers meet the
James River just before it enters the Chesapeake Bay adjacent to the city of Norfolk, Virginia. The
battle was a part of the effort of the Confederacy to break the Union blockade, which had cut off
Virginia’s largest cities and major industrial centers, Norfolk and Richmond, from international
trade. The battle was the first meeting in combat of ironclad warships: USS Monitor and CSS
Virginia. USS Monitor was a semisubmersed, iron-hulled steamship and was the first ironclad
warship commissioned by the Union Navy. Her remains were found upside down 16 miles off
Cape Hatteras in 1973 at a depth of about 240 ft. In 1987, the site was declared a National Marine
Sanctuary, the first shipwreck to receive this distinction. Because of Monitor’s advanced state
of deterioration, recovery of any remaining significant artifacts and ship components was quite
urgent. Numerous fragile artifacts, including the innovative turret and its two Dahlgren guns,
an anchor, steam engine, and propeller, were recovered. They were transported to the Mariners’
Museum in Newport News, where a full-scale copy of USS Monitor, the original recovered turret,
and a variety of artifacts and related items are on display.3 Also in Newport News is the largest mil-
itary shipbuilder in the United States and sole designer, builder, and refueler of nuclear-powered
aircraft carriers. HII is responsible for building more current aircraft carriers than the rest of the
world’s navies put together. Virginia would be a superpower if they seceded today.

Most consider French physicist Pierre Curie’s discovery of piezoelectricity in 1877 to be the
moment that sonar was conceived. Thirty-five years later, also inspired by the sinking of the
Titanic, Physicist Paul Langevin was commissioned to invent a device that detected objects at
the bottom of the sea. Langevin invented a hydrophone –what the World Congress of Ultrasound
in Medical Education refers to as the “first transducer” in 1915. Langevin built an echo-ranging
system using quartz crystals placed between two steel plates to generate sound. In 1918, for the first
time, echoes were received from a submarine at distances as great as 1500 m. WWI came to an end,
however, before underwater echo ranging could meet the German U-boat threat (See http://rsnr
.royalsocietypublishing.org/content/66/2/141, https://phys.org/news/2008-02-inventor-sonar-hist
ory.html and http://journals.sagepub.com/doi/pdf/10.1177/0968344516651308).

1.1.3 Aircraft Detection

Acoustic location was used until the early years of WW2 for detection of aircraft by picking up the
noise of their engines (Marco!), which was then analyzed to determine the direction of the aircraft
(Polo!). Horns give both acoustic gain and directionality; the increased interhorn spacing com-
pared with human ears increases the listener’s ability to localize the direction of a sound. Acoustic
techniques had the advantage that they could “see” around corners and over hills, due to sound
refraction. The technology, shown in Figure 1.2, was rendered obsolete by the introduction of radar,

3 See, for example, https://en.wikipedia.org/wiki/Battle_of_Hampton_Roads.

http://rsnr.royalsocietypublishing.org/content/66/2/141
http://rsnr.royalsocietypublishing.org/content/66/2/141
http://journals.sagepub.com/doi/pdf/10.1177/0968344516651308
https://en.wikipedia.org/wiki/Battle_of_Hampton_Roads
https://phys.org/news/2008-02-inventor-sonar-hist
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Figure 1.2 Aircraft engines produced unprecedented sound, so in order to hear them at a distance, the war
efforts developed listening devices. A two-horn system at Bolling Field, USA, 1921. Sound location
equipment sometimes had four acoustic horns, a horizontal pair and a vertical pair, connected by rubber
tubes to stethoscope type earphones worn by two technicians that enabled one to determine the direction
and the other the elevation of the aircraft. Source: Unknown author/Wikimedia Commons/Public Domain.

which travels at the speed of light instead of the speed of sound. Japanese acoustic locators were
colloquially known as “war tubas,” which I hope sounds as funny in Japanese as it does in English.

Practical radar technology was ready just in time to turn the tide during the Battle of Britain,
thanks to the cavity magnetron [16] and amateur scientist and Wall Street tycoon Alfred
Lee Loomis, who personally funded an enormous amount of scientific research at his pri-
vate estate before leading radar research efforts during WW2 [17, 18]. The atomic bomb may
have ended the war, but radar and sonar won it. Then, during the entirety of the Cold War,
uncounted billions were spent continuing to refine radar and sonar technology, countermeasures,
counter-countermeasures, etc. with much of that high-level and mathematically esoteric scientific
work quite highly classified. The result is virtually undetectable submarines that patrol the
world’s oceans and stand ready to assure mutual destruction as a deterrent to sneak attack. More
visibly, but highly stealthy, radar-evading fighters and bombers carrying satellite-guided precision
weapons can destroy any fixed target anywhere on the planet with impunity while minimizing
collateral damage. It’s both comforting and horrifying at the same time.

What humans have been trying to figure out since Maxim’s pamphlet, is how to interpret the
various radar blips, sonar pings, and ultrasound images [9]. The fundamental issue is that the
shape, size, orientation, and composition of the object determines the character of the scattered
signal, so an enormous amount of mental effort has gone into mathematical modeling and com-
puter simulation to try to understand enough about that exceedingly complex physics in order to
detect navigation hazards, enemy aircraft and submarines, tumors, structural flaws, etc. Much of
that work has been what is called by mathematical physics forward scattering, wherein I know
what I transmit, and I know the size and shape and materials and location and orientation of the
scattering object. I then want to predict the scattered field so I’ll know what to look for in my data.
The true problem is mathematically much more difficult, called inverse scattering, wherein I know
what I transmit, and I measure some of the scattered field. I then want to estimate the size and
shape and materials and location and orientation of the scatterer. Many scientific generations have
been spent trying to solve inverse scattering problems in radar, sonar, and ultrasound. There has
been a fair amount of success [19–23].
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1.1.4 Medical Ultrasonography and NDE

X-rays were discovered entirely by accident. Professor Roentgen was messing around in his labora-
tory with some new-fangled cathode ray tubes and he noticed that photographic plates were being
fogged even though they were still wrapped tightly in paper and had never been exposed to light.
He shut himself into his laboratory and worked tirelessly to explore the behavior of these unknown
rays (which he gave the symbol “X”) before announcing his discovery to the world and winning the
first Nobel Prize. His first X-ray image is still used in textbooks today. It’s his wife’s hand with her
large ring. Presumably she was bringing him a sandwich or something and he said, “Put your hand
here, bitte.”

Getting the occasional X-ray isn’t a problem, but if you X-ray your hand each time you tune up
the machine, you’re going to lose that hand. Edison recognized the adverse health effects of X-rays
pretty early on, and personally stepped back from the development efforts in his laboratory. He
ended up losing his head X-ray technician bit by bit, starting with fingers and then hands.

It’s a little hard to overstate how quickly X-rays became important; it took a matter of several
weeks. In those days, doctors made house calls, of course, but they couldn’t really do all that much.
They would often do their diagnosis without even having their female patients disrobe, so it’s not
all that surprising that a common mansplainy diagnosis was “women’s troubles.” X-rays were a
revelation. Some considered them shockingly improper in that they could see through clothing
and make photographs of bones and other private things.

Personally, I find X-rays kind of boring. All they do is go in a straight line getting absorbed along
the way according to the tissue density. CT scans are cool, of course, but the radiation dose is a
concern. They’re also expensive.

I like diagnostic ultrasound quite a lot. It’s so safe we use it on pregnant women. It’s cheap.
It’s portable. It’s real time. The physics is really complicated. It works for medical imaging and
structural health monitoring, with surprisingly few differences. The same equations also describe
underwater sound and bat echolocation. Medical ultrasonography dates from the early 1950s4

although ultrasound for structural inspection is just a bit older.
In my research group, we do both medical imaging and structural health monitoring using ultra-

sound. We also do quite a lot of other things because every so often the world changes dramatically
and unpredictably. For example, when the Space Shuttle Challenger exploded in January 1986
(Figure 1.3). I was a second-semester senior, aerospace engineering major, about to be commis-
sioned as an officer in the US Air Force with orders to go to Space Command. I was in my apartment
in Boston doing propulsion homework when the anomaly happened and the entire space program
imploded.

4 John Julian Wild was born in Kent, England and received BA and MA degrees in Natural Sciences (with honors)
from Cambridge University. In 1944, he joined the Royal Army Medical Corps and attained the rank of major and
then after World War II, he was a fellow in the Department of Surgery at the University of Minnesota. He had
become interested in treating bowel distention, which was often fatal, following bomb blasts from buzz-bombs. He
needed to measure the changes in thickness of the bowel wall and pulse-echo ultrasound was considered a
possibility, but commercial nondestructive testing (NDT) equipment developed by Donald Sproule in England and
Floyd Firestone in the United States for detecting cracks in tank armor plate, operated at too low a frequency to
achieve the resolution required for bowel wall measurement. A much more sophisticated piece of ultrasonic
equipment developed during wartime to train flyers to read radar maps of enemy territory operated at 15 MHz.
Using this equipment Wild quickly confirmed the possibility of measuring living bowel wall thickness at that
frequency. Experiments with a surgical specimen of cancer of the stomach wall proved the concept of using
pulse-echo ultrasound for tumor diagnosis and detection, although the use of ultrasound in medicine was skeptically
received. http://www.washingtonpost.com/wp-dyn/content/article/2009/09/23/AR2009092304474.html.

http://www.washingtonpost.com/wp-dyn/content/article/2009/09/23/AR2009092304474.html.
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Figure 1.3 We’ve grown used to wonders in this century. It’s hard to dazzle us. But for 25 years, the United
States space program has been doing just that. We’ve grown used to the idea of space, and perhaps we
forget that we’ve only just begun. We’re still pioneers. They, the members of the Challenger crew, were
pioneers. We’ll continue our quest in space. There will be more shuttle flights and more shuttle crews and,
yes, more volunteers, more civilians, and more teachers in space. Nothing ends here; our hopes and our
journeys continue [24]. The loss of the Space Shuttle Challenger may have effectively ended a generation’s
hopes of going to space, but it did cause an explosion of R&D. Source: NASA/Public Domain.

Since the Air Force suddenly didn’t have anything for me to do, they let me stay at the university
for a year and get a master’s degree. I wrote a thesis on elastic wave attenuation due to scattering
from inhomogeneities, with applications in seismology. That went well enough that I requested to
delay my active duty service commitment for three more years and get a PhD. The Air Force didn’t
need second lieutenants with doctorates, so they issued me orders to report to San Bernadino, CA
where, for four years, I would do something or other entirely unrelated to either of my freshly
minted engineering degrees.

From his hospital bed where he was recovering from colon cancer surgery, my advisor phoned
a three-star general and got my orders changed so that I would be assigned to the Air Force base
outside of Boston and could then continue on with graduate school in my spare time. Even back
then, I knew how unusual that was. So, I cut my hair, put on my uniform, and reported for duty
on 21 July 1987. They had more lieutenants than they knew what to do with because this was just
about at the peak of the Reagan military buildup. In modern terms, it was a lieutenant bubble.

The commanding general had a policy of making the various program offices on base compete
for the new talent, so I was told to take two weeks and interview around base and then come back
and tell them where I wanted to be assigned. It was an easy choice because I had just finished a
master’s thesis with applications in seismology, and the one place in the Air Force where that kind
of research was done was the Air Force Geophysical Laboratory up on the Hill with an excellent
library and grass and trees and such. Recall that the whole point of getting my orders changed was
so that I could both serve on active duty and finish my PhD.

It turned out that AFGL was a tenant organization on the base, and so I could choose to be
assigned anywhere except there. If you’re familiar with the way bureaucracies function, that
outcome should give you comfort because my story was going far too well to be believable. So,
there was a little cinder-block building up on the Hill near the library, where a small group of
people were doing electromagnetic scattering for counter low-observables, that is, stealth. They
didn’t need me or have anything for me to do, but I had myself assigned there and they gave me a
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big gray steel desk in a corner where I could try to come up with something for myself to do related
to electromagnetic scattering.

It worked out reasonably well. I finished my PhD on schedule, despite my advisor dying from
colon cancer. Along the way, I taught myself quite a lot about electromagnetic scattering for stealth
at a time when the big aerospace companies were paying enormous salaries to anybody who could
recognize Maxwell’s equations in neon lights. If you’re doing the math in your head, you may have
calculated that the Cold War ended just before my four years in the Air Force were up. I learned
early on in my career to focus on the fundamental mathematics and physics that can be applied to
a variety of applications so that you can reinvent yourself as needed. You’ll need to.

Meanwhile, the Challenger disaster and a sequence of aircraft accidents caused by structural
flaws (Aloha Airlines Flight 243 and United Flight 232) caused the field of nondestructive evalua-
tion5 to explode, in a good way.

Flight 243 was caused by cracks around rivets in fuselage lap joints, which developed due to
metal fatigue after many years of pressurization for innumerable short hops between islands.
Flight 232 was caused by a crack in the titanium engine rotor hub that developed due to a hard
alpha inclusion in the titanium billet the rotor hub was forged from. Both tragedies should have
been prevented by proper inspections. In 232, only 100 people died; in 243, only one person died.
Only is the key word, except that nobody should have died dammit!

At NASA Langley Research Center in Hampton, VA, the Nondestructive Evaluation Sciences
Branch grew much faster than their allotment of civil service slots would allow. The answer
was to bring on board most of the scientific researchers as contractors rather than government
employees, and The College of William & Mary in Virginia was one of those contractors. I was
excited to come to Williamsburg to help build the Applied Science Department and oversee
the NDE graduate program, with very close ties to NASA LaRC because we had a number of
graduate students and research scientists who worked on the Center. We also often work with
the people building aircraft carriers, just across the peninsula from NASA. There seems to be a
never-ending sequence of scientifically interesting and technically challenging NDE problems
both places. I’ve been at W&M for 62 semesters and counting. I plan to stay here for an even
100 semesters, so I guess you could count down: T-minus 38 semesters. You may note that many
of the notables who developed the scattering we’ll be discussing had quite long and productive
scientific careers.

5 Donald O. Thompson recognized that there wasn’t an adequate science base for NDT to be more quantitative, so
he convinced the Defense Advanced Research Projects Agency (DARPA) to fund university researchers in a
coordinated manner. A key feature of the program was the Annual Review of Progress in QNDE, the proceedings of
which now represent 40+ years of the progress literature for QNDE. I had a chance to talk with Don briefly a week
before he died at the age of 86. It was at the 2013 QNDE meeting in Baltimore and after the dinner and speeches,
where he was recognized as a leader in the development of the global NDE community, I knelt down in front of his
wheelchair and we chatted a bit. Later I commented to my graduate students who weren’t there that they missed a
chance to see me genuflect. Don deserved that level of respect from the NDE community. He was responsible,
perhaps more than anyone, for turning NDT from a collection of technician-level engineering methods into a stand
alone scientific field. He had a particular talent for recognizing scientific talent, combined with the political savvy to
convince funders to fund the research of the scientists he had convinced to cooperate instead of compete. I have a
complete set of the QNDE proceedings in my laboratory, and have been attending the conference with some
regularity since 1993. The origin of the meeting is that Don didn’t want to have to write long technical reports every
year, so instead he arranged for everybody to come to a conference and submit progress reports on their work for
that year, and the collection of these papers were lightly edited and served as both conference proceedings and
technical report. It seems obvious in retrospect, but it is really genius. One of Don’s long-time colleagues said of
him, “Don ruled with an iron hand, but was compassionate and the best boss I have ever known.”
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1.2 Ultrasound Immersion Tank Scans

So I ended up doing radar scattering for a living by accident, and then ended up doing ultrasound
scattering for NDE by accident. I am also accidentally a leading expert in dental ultrasonography
and developed a sequence of prototype machine-learning-based prostate cancer diagnosis systems
that used both trans-rectal and trans-urethral ultrasound scanners. It’s new things all the time,
which is part of the fun, especially since the math and physics we’ve worked hard to master doesn’t
change. We’ll get to all that, but first I think it would be helpful to describe some of the ways that
the data we’ll be modeling with those equations is acquired. We’ll start with ultrasound, which is
a subset of acoustics.

Acoustics describes the phenomenon of mechanical vibrations and their propagation in solid,
liquid, or gaseous materials. Sound waves above 20 kHz or so are inaudible and are referred to as
ultrasonic or ultrasound. Ultrasound is useful for medical imaging and structural flaw detection
because it propagates well in many solids and liquids, and because it is sensitive to local changes
in material properties. Ultrasonic wavelengths are of the same order as flaw sizes that are often of
interest.

Here’s a simple question for you: What are ultrasonic wavelengths at 100 kHz, 1 MHz, 10 MHz,
100 MHz, and 1 GHz for several common structural materials? This question is going to come up
again throughout the book, so I’d suggest taking a few minutes and tabulating the numbers. More
importantly, keep in mind about what the answers turn out to be.

Here’s another question: What can I do to keep the sound from my neighbor’s stereo from
coming through the wall of my apartment? The Straight Dope explains nicely a few key concepts
that are in play in response to apartment-dweller-Derek’s question, so I think I’ll just include three
paragraphs here from Cecil Adams’ overnight staff reporters6:

Everyone knows intuitively – it barely counts as an observation – that sounds get weaker (i.e.
become attenuated) as they travel farther from their source. But why? Much of it is scattering and
absorption. A sound wave passing through any medium – air, say, or drywall – does so by causing
the medium’s molecules to vibrate. Scattering is the extent to which the wave gets fragmented and
redirected upon striking an obstacle in its path. (Picture ripples on the surface of a pond breaking
into subripples when they encounter a rock or stick poking out of the water.) Absorption is the
drop in volume caused by energy loss in the form of heat – the result of making all those molecules
move around. And the effects of both scattering and absorption increase with the frequency of the
wave – the higher the frequency, the greater its tendency to die out. Thus, the treble and midrange
sounds coming from your neighbor’s apartment get scattered and absorbed more thoroughly as
they pass through the various matter surrounding it, leaving the big, dumb low-end waves to
lumber along till they find you.

If the frequency and volume are right, sound waves can cause entire objects to vibrate sympathet-
ically – surely you’ve heard of those souped-up car stereos that turn their host vehicles into gigantic
joy buzzers. Because of their relatively large mass, things like walls and floors resonate more at low
frequencies than at high ones, and thus can help to pass the bass notes along, particularly if the
speaker is touching the potentially resonant surface. Long-term resonance can be pretty destruc-
tive: Thanks in part to vibrations caused by the wind that regularly swept over it, in 1940, the old
Tacoma Narrows Bridge7 shook itself to pieces and collapsed into Puget Sound.

6 https://www.straightdope.com/21343871/why-is-bass-so-boomy-and-what-can-i-do-about-it.
7 I always have my structures class look up “who died” when Tacoma Narrows collapsed. It was a cocker spaniel
named Tubby who was left in the car you can see in the video.

https://www.straightdope.com/21343871/why-is-bass-so-boomy-and-what-can-i-do-about-it
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Low-frequency noise is weird stuff. Years back, I noted that infrasound – sound pitched below
the hearing range of most humans, which stops at around 20 Hz – can cause dizziness. Some recent
research suggests it may do more than that. After taking spectrum analysis readings at a couple of
UK sites repeatedly described by visitors as “haunted,” Vic Tandy and Tony Lawrence of Coventry
University have argued that the presence of 18.9 Hz infrasound is responsible for the creepy feel-
ings described. (In one case, they concluded that a terrifying, seemingly paranormal experience of
Tandy’s had likely resulted from the whirring of a laboratory extractor fan causing his eyeballs to
resonate.) And in 2003, the use of 17 Hz infrasound at London concerts of experimental electronic
music correlated with audience reports of “unusual experiences” including nausea, momentary
anxiety, tingling, and a sense of coldness. Ideally, Derek, by the time your neighbor has traded his
bass for an ultra-low-end tone generator, one of you will have found someplace else to live.

Here’s another question: Is there some sort of semiaudible acoustic weapon causing
concussion-like symptoms among US diplomats around the world? Havana Syndrome caused
quite a lot of noise a few years ago, although it turned out to be a fairly typical case of mass
psychogenic illness. The sounds that diplomats were hearing were crickets and cicadas, but it’s
not true that the ill effects were all in their heads. Psychogenic illnesses can, in fact, result in
physiological symptoms [25]. To be clear, infrasound generated by wind turbines does not manifest
ghosts in your basement or bats in your belfry [26]. Bats do use ultrasound to echolocate, though.
Typical frequencies are around 50 kHz and it’s a good thing that those frequencies are inaudible
to us because bats are really loud and they screech COVID into the miasma while I’m trying to
sleep.8

The last time I went to the eye doctor to get my prescription updated, I was very excited to have
him scan my eyeball via Optical Coherence Tomography. He was equally excited to have a patient
who knew the technology and how to interpret the images. We may have chatted for a while and
backed up his other appointments. My bad.

OCT uses low-coherence interferometry to produce a two-dimensional image of optical scat-
tering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo
imaging. Indeed, the display looks rather a lot like ultrasound B-mode, but OCT has longitudinal
and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as
10−10 of the incident optical power. I’ve been following this technology development from the
earliest day. The first NSF review panel I ever served on, back in the 1990s, was for OCT. The most
unwieldy review panel I ever served on was when NIH was pushing hard to get this technology
out of the laboratory and into clinical usage. That panel had 50-ish reviewers on it, and we were
trying to do the premeeting streamlining of the noncompetitive proposals via an old-fashioned

8 As a student, Donald Griffin and a fellow student, Robert Galambos, found that bats could use reflected
ultrasound to detect objects. In 1944, Dr. Griffin coined the term echolocation to describe the phenomenon. To
many, the idea was outrageous. Dr. Griffin once wrote, “One distinguished physiologist was so shocked by our
presentation at a scientific meeting that he seized Bob by the shoulders and shook him while expostulating, ‘You
can’t really mean that!’ “ While echolocation is well accepted today, Dr. Griffin’s pleas that animal thinking and
consciousness become standard fare for research have met with more mixed success. The numerous and vocal
critics of the growing field of cognitive ethology include both scientists and philosophers. Scientists complain the
field is too dependent on anecdote, highly subjective and anthropomorphic, more akin to the way a dog owner
envisions his pet’s day than the way a scientist typically approaches the study of animal behavior.

Whitlow W.L. Au was born in Honolulu in 1940 and earned his bachelor of science in electrical engineering
from U. Hawai’i at Manoa and his PhD from Western Washington University, and then joined the U.S. Navy’s Naval
Undersea Center. Following his seminal paper in 1974 on the echolocation signals of Atlantic bottlenose dolphins,
Au went on to methodically quantify the performance and signal characteristics of dolphins and other small whales
that echolocate under water. His book, “The Sonar of Dolphins” published in 1993, remains as the primary source
for describing dolphin echolocation. He died in 2020 at age 79.



1.2 Ultrasound Immersion Tank Scans 11

conference call. The problem was that the panel chair was on his cell phone driving in his car, and
when his call would drop, we’d all have to wait on the phone until he dialed back in.

Because OCT uses near-IR wavelengths, there’s sufficient penetration of opaque soft tissues to
use it for a variety of superficial applications. Many are being developed in dentistry these days.
Since the light can be delivered via fiber optics, there are all manner of endoscopic applications of
OCT. You’d be surprised to know what urologists will jam where and still call it noninvasive.

Ultrasonic frequencies used for medical imaging and NDT of structural materials tend to be in the
low MHz range. At these frequencies, the wavelengths are quite small and attenuation is usually a
concern. The trade-off is that you’d like to go to higher frequencies in order to get better resolution,
but attenuation often scales like the square of frequency, so doubling the frequency quarters the
depth of penetration. As a personal aside, I think all this is pretty interesting because it requires
a fair amount of understanding of the propagation properties of the ultrasound in order to design
sensible measurement schemes. The first ultrasound measurement scheme we should talk about
is immersion tank scanning.

Figure 1.4 is a cartoon of an ultrasound immersion tank. At MHz frequencies ultrasound doesn’t
propagate through air much at all, so if you can immerse your test specimen in water, then you
can use that water bath to couple the ultrasound from your transducer into and back out of the
specimen. The transducer is typically held by a search tube which is connected to a scanning bridge
that moves it to and fro and back and forth under computer control.

Immersion tanks come in a variety of sizes (Figure 1.5), but the electronics is all pretty much
the same. The computer that manages the motion control also communicates with the ultrasonic
pulser-receiver, which sends and receives the voltage signals to and from the transducer as well as
with the analog/digital conversion unit, which turns analog voltage signals into digital computer
values and vice versa.

In Figure 1.6, I’ve isolated just the part that we’ll need to model, at least initially. The transducer
emits an ultrasound pulse which is incident upon the test specimen, which for simplicity I’ve drawn
as a slab. The acoustic properties of the slab are, of course, different from the water it’s immersed in.

Scanning

bridge

Search tube

transducer

Immersion tank

Test specimen

Pulser – receiver

A/D and computer

Figure 1.4 Ultrasound immersion tank provides a convenient way to scan a specimen for flaws, if the
specimen can be immersed in water. The ultrasound transducer is attached to the end of a search tube,
which is rastered across an area via stepper motor in a scanning bridge. At each point in the scan,
the pulser–receiver sends a voltage spike to the transducer, which excites an ultrasonic wave pulse at the
resonant frequency of the PZT crystal in the transducer. That ultrasound wave both reflects from the test
specimen and is transmitted into it. The resulting echoes are received by the same PZT crystal, which then
sends an analog voltage trace back to the receiver, where it is amplified and filtered before being converted
to a digital signal and stored on the computer, which also controls the scanning and triggers the pulser.
Each digitized voltage trace, called an A-scan, carries information about the various material interfaces and
discontinuities because time delay of the echoes corresponds to depth, scaled by the speed of sound.
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(a) (b)

Figure 1.5 Immersion tanks can be quite large, as in this one (a), which holds 6 × 6 × 6-feet of water.
Note a smaller tank that holds 2 × 2 × 3-feet of water at the lower left of the image behind the window.
In acoustic microscopy where very high frequencies are used to find tiny flaws in small samples, an
immersion tank may be a small water container on a high-precision scanning bridge atop a
vibration-isolation table. Ultrasound can also be done in contact mode (b), either with hand-held
transducers or with scanners configured to have the transducer(s) follow any curvature of the surface.
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Figure 1.6 Consider an incident plane wave interacting with a
slab of thickness d. For an acoustic model, we need to know the
speed of sound and density in order to characterize the wave
behavior, but since k = 𝜔∕c it’s also convenient to use wave
number and density. Here we assume that the material to the
left and to the right of the slab are the same fluid, that is, water
in an immersion tank, but the slab is some other material, so the
subscripts are different.

I hope it doesn’t throw you off that I’ve drawn it sideways because one of the key skills we’re going
to need is the ability to analyze a physical measurement scenario and isolate just the parts of it
that are important for our models. When I teach mechanics of materials, I always insist on a good
free-body diagram as the first step in solving a problem. If a student gets that right but makes some
mathematical errors during the solution that leads to the wrong answer, I can still give lots of partial
credit with the caveat that if you screw up the math in the real world and the structure you designed
falls down, that’s all on you.

Since the point of scanning a sample in an immersion tank is to inspect for flaws, Figure 1.7
shows the ultrasound inside of the sample reflecting from a flaw. The whole name of the game is
going to be analyzing such reflections from flaws in order to tell as much as you can about the flaw.
It’s not good enough to just find a flaw, we want to know how deep it is, how large it is, what kind
of flaw it is, how a flaw of that sort could impact the viability of the structural element, whether
the flaw is likely to get worse (they never just magically heal themselves), or can I still use this
structural element for a while longer.

If putting the sample in an immersion tank isn’t practical, ultrasound measurements can be done
with the transducers placed directly onto the surface of the structure, typically with some sort of
couplant. Medical ultrasound uses hypoallergenic gels that can even be warmed for patient comfort.
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Figure 1.7 Reflections from a flaw in the test specimen will
give echoes in the A-scan that are between the front-face
and back-face echoes. Indeed, the time delay of the flaw
echo tells its depth accurately, and as the transducer is raster
scanned across the test specimen, the peak corresponding to
that flaw echo can be tracked to determine the lateral extent
of the flaw.

Immersion tank

Flaw

NDT uses a variety of specialized couplants, which don’t need to be warmed, but sometimes just a
little film of water can work fine. Honey also works, but it gets so sticky so just don’t. The function
of the couplant is to make sure that there’s no air gap between the transducer face and the surface.
Oh, and for structural health monitoring applications, we sometimes just glue the transducers
to the surface and leave them there. Figure 1.5 shows a few contact scanning apparatus in the
laboratory, both for a cylindrical storage tank in the foreground and two plate scanners in the
background. Figure 1.8 shows two examples of portable ultrasound systems, where the ultrasound
pulser-receiver and A/D functions are in the small black box connected to either a tablet or a laptop
via USB. It has been quite interesting over the years watching ultrasound electronics shrink down
from two racks of equipment to a pocket-sized unit connected to a tablet. Visitors to the lab are
often a little disappointed that there aren’t more flashing lights and whirring equipment to show
them. Field trips to newspaper offices and telephone exchanges also used to be more interesting.

The pulser-receiver exchanges analog voltage pulses with the transducer. Figure 1.9 shows a cut-
away view of a typical ultrasound transducer. Sorry that it’s not more exciting than a piezoelectric
crystal disc metallized on the two flat faces so that a voltage across it causes it to vibrate and emit
ultrasound, and then when it’s vibrated by returning ultrasound echoes, it gives a voltage response.
I have some cut-away transducers for visitors to handle.

Figure 1.8 In recent years,both the computers and the ultrasonic instrumentation have shrunk
dramatically. A tablet or laptop controls a USB-powered nanopulser, which is a combined pulser-receiver
and A/D unit connected to a contact transducer or handpiece.
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Case

Damping block

PZT crystal Delay line/wear face

Matching element

Electrical connector

Figure 1.9 Cutaway view of an ultrasound transducer. The PZT crystal has metallized faces, so it vibrates
in thickness mode when excited via a voltage spike. The damping block is typically tungsten-loaded epoxy,
and keeps the transducer from ringing so that reflections can be recorded. The delay line is used to couple
the ultrasound more optimally to water for immersion scanning or metals for contact scanning.

1.3 A-, B-, C-Scans, M-Mode

We’re going to have to introduce some jargon. I’ve included some cartoons that I hope will be
helpful, but I made these figures while learning a drawing package so they’re not fancy. Most
people get these concepts best when they collect some data themselves, or at least see some anima-
tions/demonstrations so don’t be shy about looking up some of those.9

Figure 1.10 shows an A-scan or A-line. A stands for amplitude, and this representation is pretty
much just the voltage of the transducer as a function of time. Back in the day, this is what you
would see on the little green (or orange) screen of your oscilloscope and then you’d take a polaroid
picture of it to paste into your laboratory notebook with rubber cement.

If you send a spike voltage to the transducer (Figure 1.10), it will give a shape kind of like I’ve
drawn because the transducers are damped (so as to not reverberate like a bell) and reflections from
material interfaces will give reflections that are about that same shape. The nearest interfaces will
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Figure 1.10 A pulse-echo waveform is called an A-line, which shows amplitude vs. time delay. In this
cartoon, the first pulse is the front-face reflection from a sample and the later pulse is the back-face
reflection. Knowing the speed of sound in the material allows the thickness of a sample to be measured.

9 Here are some books you’d find in my lab: [27–48].
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give the first reflections, and deeper interfaces will give later reflections. Assuming a fairly constant
speed of sound, the time delay of the reflections gives the depths of the interfaces. The amplitude of
the reflection is related to the difference in acoustic properties between the materials at the interface
because some of the incident wave is reflected and some of it is transmitted. Subsequent interfaces
will only see that transmitted signal, so their reflections will be smaller. Attenuation will also tend
to reduce the amplitude of deeper reflections. Again, playing with this in the lab for a few minutes
makes this all intuitive. Assuming you know what material you’re testing and you look up the speed
of sound, as long as you include a factor of 2 because the reflection goes to the interface and then
comes back, it’s a pretty simple matter to verify that the two pulses in Figure 1.10 are the front
face and back face reflections from the slab. If you’re doing these tests in an immersion tank, you
can also reach in and lift up the slab and watch both peaks in the A-line move toward you. Try to
remember to roll up your sleeve first, though.

Once you’ve verified that the peaks you’re looking at are the front and back face reflections, and
of course dried off your sleeve, you can look for any echoes between them, which might be due to
flaws, as Figure 1.11 shows. As before, the time delay of the echo from the flaw tells how deep it is,
and the amplitude of that echo carries information about how reflective the flaw is. The ultrasound
beam always has some lateral dimension to it, more like a flashlight than a laser pointer, but the
A-line doesn’t give you much spatial, that is, lateral, information. Focused transducers will give a
larger reflection if the flaw is at the focal depth, of course, so again it really helps to get a feel for
this if you can play around in the lab for a while. Roll up your sleeve this time.

Since you can just save the data to your computer and don’t have to take a ruler to that Polaroid in
your lab notebook, the first thing you’re going to do with the A-lines is to window out the front and
back face reflections. We usually call that process gating (Figure 1.12) and there used to be knobs
on your ultrasound instrument that you would use to adjust the gates while you were recording
data. It was always disappointing when you set the gate(s) wrong and recorded useless data. You
and your soggy sleeves often had to take a few tries at things to get the gate and amplification and
such just right before you got the data you needed. The point is that you don’t care about the front
and back-face reflections; you care about the often much smaller echoes from the flaws and you
want to zoom in on those to analyze the details.
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Figure 1.11 A flaw in a sample will occur between the front-face and back-face reflections. Time delay of
the flaw echo tells the depth of the flaw, and analysis of the detailed character of the flaw echo is the
essence of quantitative nondestructive evaluation.
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Figure 1.12 Since it’s the flaw that’s of interest, typically one gates the A-lines to exclude the front- and
back-face echoes. The width of the gate, shown in the shading, can be adjusted to isolate particular depth
slices of interest by ignoring any echoes that are not inside that time-delay window.
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Figure 1.13 As the transducer is scanned laterally, a number of A-scans can be registered next to each
other in order to determine the lateral extent of the flaw. If the amplitudes of the registered A-lines are
shown as brightness, the two-dimensional representation is called a B-scan. In medical imaging, the A-lines
are connected in a fan shape, so the familiar ultrasonographic B-Scan will be fan shaped. For a small
intra-cavity probe, the transducer array may be annular and the B-scan image is a hollow circle.

If the search tube that holds your transducer is attached to a stepper motor system, then while
your soggy sleeve is drying, a sequence of A-lines could be recorded as the transducer is moved
laterally. Figure 1.13 shows several A-lines spread out next to each other, and since I’ve gated out
the front- and back-face reflections, it becomes obvious what the lateral extent of the flaw probably
is. Figure 1.13 also shows this same 2D data set but with amplitude of the echoes converted to
brightness of the corresponding pixels. Since you’re doing this with a scanner and you want to
make pretty B-mode images, you record lots of A-lines to get lots of pixels. I hope you noticed that
B stands for Brightness. In addition, if you’re reading the printed version of this book or the ebook
on a tablet, please rotate it so Figure 1.13 shows scanning across the top and depth pointing down.

So B-scans are just a bunch of A-scans lined up next to each other because your computer-
controlled scanner does that without you having to pedal it, and we get these lovely intuitive
images that tell us the depth and size of flaws. Surely you’ve noticed that most scanners can scan
in two directions, so you can make a bunch of B-scans and stack them up adjacent to each other
as in Figure 1.14. Old timers who remember gluing Polaroids into their lab notebooks with rubber
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Figure 1.14 The 3D volume of data can be sliced
vertically to give a B-scan or horizontally to give a C-scan.
Typically, the A-scans are all gated to analyze the echoes
from a particular depth range and then the C-scan image
is rendered by using the highest amplitude echo within
that gate at each location as the image pixel value there.
The depth gate can be as large or as small as you like, and
you can form as many C-scans as you like. If you prefer you
can just acknowledge that you’ve got a 3D volume of data
that can be sliced in a variety of ways to make 2D images.
Be careful using words like slice when you’re talking to
expectant parents about their fetal ultrasounds, though.

Scanning

Gate for C-scan

Stack of

2D scans

D
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cement are all jealous that you can acquire this much data.10 It seems too easy to people who had
to get up off the sofa and walk across the room to flip between the three stations on the television
or turn the record over.

Back to gating. Once you’ve got that 3D volume of data, you can slice it in a variety of ways. A
C-scan is a horizontal slice as shown in Figure 1.14. Recall that the point is to locate the flaws and
then to tell something about them, so a C-scan allows you to isolate just the echoes from the depth
range that includes the flaws of interest. This used to be tricky. High-resolution scans can take a
long time, and before computers could handle 3D volumes of data you had to set the gates for the
C-scan before you started the scan. It wasn’t unusual to have to try a few different scans to get the
data that you needed because if the gate was at the wrong depth or the gate was too narrow you
would end up with a garbage image. Sometimes you stood there shaking the Polaroid waiting for
the image to come into view only to find you had your thumb over the lens.

The C-scan is going to end up being a 2D image, with pixel brightness corresponding to echo
amplitude, but it’s the orthogonal view to a B-scan. Typically, the pixel values are the largest ampli-
tude echoes of each A-line inside the gate, but you can also set the gate to be quite narrow and
make a bunch of C-scans for a bunch of different depths. Since you’ve got a 3D volume of data, you
can also go back and form B-scans by slicing the data in the other vertical plane. No rubber cement
required. You can scroll through a whole bunch of different B- and/or C-scans without even getting
up off the sofa.

B-modes are common in medical imaging, but they are often sector scans rather than rectangles.
This is because medical ultrasound uses phased arrays to sweep the beam electronically, and to
update the images at video frame rates so we can see motion. The images are still formed from a
bunch of A-scans next to each other, with echo amplitudes converted to brightness. Speckle is just
the manner that inherent tissue inhomogeneities present in brightness mode.

10 Professor John M. Reid was born in Minneapolis and received the BS (1950) and MS (1957) degrees in Electrical
Engineering from the University of Minnesota, as well as the PhD in Electrical Engineering from the University of
Pennsylvania (1965). Reid developed the first clinical ultrasonic scanner with John J. Wild via a grant from the
National Cancer Institute. Reid was the sole engineer to build and operate Wild’s ultrasonic apparatus. They built
the first linear B-mode instrument, a formidable technical task, in order to visualize tumors by sweeping from side
to side across breast lumps. In May 1953, this instrument produced a real-time image at 15 MHz of a 7 mm cancer of
the nipple in situ along with A-mode differential reflections. Based on technology from WWII radar, Reid devised
important circuitry to compensate for the attenuation of ultrasound in tissues by setting the receiver gain as a
function of the tissue depth. Similar mechanisms were deployed in most medical and NDT ultrasound systems that
followed. I’m just old enough to have used these analog time-gain compensation units, and to have met Prof. Reid
once briefly.
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Figure 1.15 In addition to A-, B-, and C-mode images, there’s
also M-mode, which stands for motion. It’s basically just a
scrolling B-scan, but can be quite useful assessing motion in
cardiology and other areas. As the sequence of A-lines scroll,
the interface causing the echo moves distally and then back
toward the transducer. It’s much more exciting when it’s
animated, sorry.

The coolest thing about real-time imaging is that you can watch things moving inside a living
being, for example, a beating heart. M-mode images are also formed from a sequence of A-lines
with amplitude converted to brightness, but here the A-lines scroll across the screen in a sort of
waterfall plot. I’m a little disappointed with my cartoon in Figure 1.15 though. Of course, M stands
for Motion, and of course, the amplitudes are converted to pixel brightness values so that M-mode
images are pretty. The name of the game in medical imaging has always been to present the clinician
a set of high-resolution images to interpret in making a diagnosis. These days machine learning
can often assist the licensed medical professional by highlighting suspicious features in images,
but artificial intelligence algorithms are typically prohibited by regulators from actually making
any diagnosis.

The above measurement schemes are all what we call pulse-echo because the same transducer
both transmits the ultrasound pulse and then records the returning echoes. In many situations,
particularly for structural health monitoring, it is useful to have one transducer transmit the ultra-
sound pulse and another transducer record the ultrasound transmissions at some other location.
We call this a pitch-catch measurement, but don’t have some sort of alphabetical nomenclature to
categorize them so I’ll describe a few.

A common scheme is to transmit the ultrasound beam into a specimen and then record what
comes out the back side with a transducer along the line of sight. Flaws or other material imperfec-
tions that reflect some energy will reduce the energy in the transmitted wave that is recorded, and
if the two transducers are attached to a yoke system, they can be scanned across an area to look for
things like disbonds and delaminations that reflect strongly and hence give a pronounced shadow
effect in the transmission. Pitch-catch schemes can also be quite useful for guided waves because
large areas of extended structures can be screened for imperfections quickly. Guided waves also
often have the useful feature that their speed of propagation depends on a structural property, like
plate thickness, so a pitch-catch measurement can look for subtle changes in arrival time of a wave
packet that indicates a thickness change due to corrosion along the path of travel. There are also a
variety of tomographic geometries where a large number of criss-cross pitch-catch measurements
can be used to reconstruct an image of the interior tissue or material variations [49–56].

Of course, the transmitting and receiving transducers can both be on the same side of the sam-
ple. Perhaps they are offset just a bit and at angles to the surface so that the echoes are recorded
at specific angles. As we’ll see, this simple generalization makes things much more complicated
because ultrasound waves in solid materials can be either longitudinal or transverse modes, and
interaction with interfaces, imperfections, etc. causes mode conversion between them. Angles of
reflection and refraction are also different for longitudinal and transverse modes, so you can set up
a measurement to transmit longitudinal modes at angles that refract and/or reflect specific wave
modes that allow you to inspect parts for specific flaw types. Any good ultrasound lab will have a
whole cabinet of transducers of different frequencies, sizes, shapes, etc. Some will be for immer-
sion scanning and some will be for use in direct contact with the specimen surface using a gel or
oil (but not honey) couplant. They all look pretty similar and the distinguishing numbers on them
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are hard to read. Let’s pause here for a few minutes while you go gather up the transducers you’ve
been using and put them away properly.

1.4 Monostatic, Bistatic, Doppler

The radar equivalent to pulse-echo ultrasound is called monostatic. An antenna transmits the radar
pulses and also records the backscattering.11 Because the speed of light is so much larger than the
speed of sound, the electronics necessary to simply record the RF waveforms and process them
afterward is pretty recent. Figure 1.16 shows a typical setup with a software-defined radio con-
nected to a tablet for transmitting and/or receiving electromagnetic waves. With one of these setups,
you’re doing monostatic measurements, but if you have a couple of them and transmit with one
and receive with another that is called bistatic. Three would be tristatic, I suppose. The point is that
these are quite portable and it’s now a simple matter to go out and about and collect RF waveforms
in monostatic or bistatic configurations, etc. without getting your sleeves wet. You should wear a
hat, though.

The textbook example of the Doppler effect is the change in pitch of a train as it passes you. I’m
pretty old and I don’t recall ever waiting at a railroad crossing while this happened. I’ve ridden
Amtrak a couple of times, but that was a miserable experience where we seemed to mostly wait
while freight trains used the tracks that Amtrak borrows. It didn’t smell great.

The good news is that doppler imaging typically doesn’t work according to the Doppler effect.
I’ll explain in terms of doppler ultrasound that is used to map blood flow, especially in cardiology.
These color images are typically overlaid onto a higher-resolution B-mode gray-scale image. It’s
much more exciting when you can see the motion, so feel free to look some up on the internet and
then I’ll describe how it’s done.

The basic idea is that you send in a rapid sequence of pulses and then compare the various echoes
in the several A-lines to calculate how much those peaks in the A-lines have shifted from one

Figure 1.16 The portable, inexpensive, high-performance USRP is a scalable software defined radio
platform that features a customizable field programmable gate array for high-performance digital signal
processing and full duplex capabilities.

11 Merrill Skolnik served as superintendent of the radar division of the U.S. Naval Research Laboratory in
Washington, D.C., for more than 30 years. While there, he made significant contributions including helping to
develop high-frequency, over-the-horizon radar; a system that can identify friend or foe during combat; and
high-resolution radar techniques. He is best known for his introductory text “Introduction to Radar Systems” and
for editing the “Radar Handbook.” He died in 2022 at age 94.
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pulse to the next. That’s straightforward to do because the shifts from one A-line to the next are
small if the pulse sequence is rapid enough. Color-code the peaks approaching the transducer one
color and code the peaks retreating from the transducer another color. Usually, the colors are red
and blue.

In addition, you may have noticed that the color doppler part of the image is just for a certain
region. That’s because the sequence of doppler A-lines are often done in between the video frame
rate B-mode image pulses, so there’s a limit on the number of doppler pulse sequences that can get
done and still update the whole image fast enough that it looks all natural to the human eye.

Doppler radar that weather guessers use to mislead you about whether you should grab an
umbrella on your way out the door could work according to the simple scheme I just described for
doppler ultrasound, but there’s this issue with the speed of light compared to the speed of sound
and the need to digitize RF waveforms and process them . . . . In practice, pulsed doppler radar
employs a number of signal processing tricks to map out the velocity of whatever backscatters
the radar beam, but again it’s not really the doppler effect like an enormously long coal train that
blows its whistle to taunt you as you’re waiting at the RR crossing with your windows up because
you’ve heard breathing coal dust might be bad for you.

“The Big Short” is a book by Michael Lewis and film starring Christian Bale, Steve Carell, Ryan
Gosling, and Brad Pitt which tells the story of hedge fund bros who saw the collapse of the housing
bubble coming and made quite a lot of money betting on that. You may or may not remember
that the Great Recession was caused by the logical fallacy that because people who own homes
are better off, everybody should own a home. Home mortgages were given to people who had no
business buying homes because the risk of default on loans was disconnected from the decisions
to write the loans by converting them to mortgage-backed securities that could be traded on Wall
Street. The PhD Quants understood that there was an assumption of statistical independence in
their models, but their MBA Banker bosses didn’t and the bankers’ CPA cronies at the accounting
firms formally assured everybody that the risk was minimal because the only way things could ever
go wrong was if housing prices all fell at once and that would never happen. It was a happy ending
for the Wall Street Bankers, though, because their other cronies in Government bailed them out.
Act two in this play was student loans, BTW. Act three is subprime car loans.

Alfred Loomis saw the stock market collapse coming and liquidated his holdings beforehand.
Loomis was a brilliant math major and inventor at Yale, but after attending Harvard Law School,
he joined a prominent Wall Street law firm and became one of its brightest young stars, specializing
in complicated corporate financial transactions. Throughout the years, while he traded vast sums
of money on the financial markets during the week, in the evenings and on weekends he worked
with the world’s greatest scientists at his own self-funded laboratory. Loomis had bought a second
mansion, a giant mock Tudor home with concrete floors in Tuxedo Park, where he invited many
of the world’s most distinguished scientists to come and spend time [18]. Albert Einstein called it
“a palace of science.”

In the late 1930s, Alfred Loomis became increasingly convinced war was coming in Europe and
that the United States would be drawn into it. Then, in early 1940 Winston Churchill organized
the Tizard Mission to introduce U.S. researchers to several new technologies the British had been
developing. Loomis welcomed them to his hotel suite in New York, where he learned about the
cavity magnetron, which was a key piece of technology that made radar small enough to put on
airplanes. Loomis was instrumental in establishing the Radiation Laboratory at MIT, arranging for
funding and clearing bureaucratic roadblocks. The Rad Lab developed the radar systems that gave
the Allies control of the skies, enabled the sinking of U-boats, spotted incoming German bombers,
and provided cover for the D-Day landing. The Rad Lab became the Air Force Cambridge Research
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Laboratory after the war, with many activities eventually moving to Hanscom, AFB where I spent
four years and a day. I even met R.W.P. King once.12

1.5 Didey Wagon vs. War Wagon

I learned to drive at age 13. It was in the orange 1968 VW bug with a pumpkin stem on top shown
in Figure 1.17. I’ve never gotten a straight answer from my mother about whether she was in on
the joke when it came back from the paint shop garish orange instead of light blue. My brother
occasionally got in trouble when that car was reported having been seen at some place he shouldn’t
have been. Tracking teenagers is much easier these days.

Figure 1.17 You’d be pretty unlikely to get a speeding ticket in a pumpkin car even going downhill. The
highly rounded front hood and fenders won’t backscatter radar all that much, and it’s rear-engine and
air-cooled, so there’s no radiator to reflect the radar. There’s no heat in the winter, but the engine is directly
above the narrow rear wheels so it’s really good in the snow even without studded snow tires. If back in the
day, I’m tooling down the road in my wine-colored Volvo 240 Wagon blowing past a candy-apple red
Corvette, there’s no way in hell I’m getting a speeding ticket, even though any radar reflections are coming
from me and my dad-mobile and not from that hopelessly insecure, compensating-for-something, former
frat-star in the slow lane.

12 Professor Ronold W. P. King’s academic tenure at Harvard University spanned all or parts of eight decades, and
his legacy is perhaps best defined by the fundamental nature of his research, his exceptional insight into the physics
of problems in applied electromagnetics, and his mentorship of over 100 PhD students. He became a Gordon McKay
Chaired Professor in 1946, and was Professor Emeritus from 1972 to 2004. He remained active in his research efforts
until late in his life, completing his last book at age 87, producing his last PhD student at age 94, and publishing his
last paper at age 99. He was honored by his past students on his 100th birthday, and died in 2006. For the 67-year
period from 1938 to 2004, he directed an active research group at Harvard investigating the applications of
electromagnetic theory to problems in antennas, radiowave propagation, and subsurface communications. The
1960s were characterized by work on scattering and diffraction of electromagnetic waves from spheres, cylinders,
strips, and disks, some with dielectric coatings. In his autobiography, he describes when he reached the proscribed
retirement age of 67 in September 1972. “President Pusey, as required by Harvard rules, came to my office in McKay
Laboratory to thank me for my services and announce my becoming a Professor Emeritus. I requested permission to
continue for five more years, pointing out that I was well able to do so.” The rules permitted an additional five years,
but the Dean “had requested that this privilege not be granted.” King had five or six graduate students at the time
and they appealed to the President, who denied the request. Mandatory retirement ages for faculty were outlawed
nationwide in 1994, BTW.
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I find that I get a speeding ticket about every nine years. Most recently, I was coming back
from taking my daughter to register for college and wasn’t paying attention because we were talk-
ing about life, the universe, and everything. There’s a bit of interstate highway that goes through
Brunswick County, Virginia and they keep the local economy afloat with aggressive speed traps.
It was the most efficient shakedown operation I’ve ever experienced. I was quite impressed. You
can’t just pay your speeding ticket on line or by mail; you have to physically show up in court or
else pay a local lawyer US 150 to represent you. I was on sabbatical, so I went there and spent a day
waiting for my two minute chat with the judge, where he and I commiserated about how hard it
is when your youngest goes off to college, and he reduced my fine by US 150. They move through
the cases so quickly that there’s an on-deck circle where you wait, and then you exit the courtroom
into a locked antechamber with two cashier’s windows where you pay before they buzz you out.
Fortunately, I wasn’t speeding when I drove through a speed trap on my way out of town. For four
years, each time we went back and forth, we set the cruise control to 69 mph and smiled at our
friends when we went through Brunswick Co.

Perhaps the first radar speed gun was put in a former diaper delivery wagon by Alfred Loomis
and his crew, although they had it painted Tuxedo Park colors so it wouldn’t attract attention. The
first time they measured the speed of an oncoming car, one of the physicists noted that they had
better not let the police know about this technology. As of 1956, there were already about 1600
radars in use throughout all 48 states. Most of the longer freeway, turnpike, or expressway police
patrols had one or more radar speed meters in operation daily, which stinks. Autonomous vehicles
with V2V will share real-time information about speed traps, which stinks for Barney Fife.

The greatest weakness of traffic radar is the way it presents its information. Vehicles can range in
size from econo-boxes to semitrucks, and all the radar will show is one number because it’s made
to the lowest bidder specs, so it has to be a relatively simple device. Traffic radar cannot distinguish
between targets within range; it cannot identify for the operator which target it’s reading; it doesn’t
say whether the target is coming or going. It’s up to the operator to decide which of the vehicles
within range is producing the reflection. Is it the closest one to the antenna, or is it the largest
one in the pack? A skilled operator intent on justice wouldn’t write a ticket unless absolutely sure.
A less-skilled operator might write the ticket thinking it was the right answer, and be wrong. A
careless operator intent on filling a monthly quota might see the number and single out a likely
perpetrator – the red sports car – and be done with it. Traffic radar is not the infallible electronic
instrument that it purports to be and because operators have a tough time keeping track of invisible
beams, traffic radar invites human error in vehicle identification [57–59].

So what might it take to design a motor vehicle that could elude police radar? Most people think
that the answer is to paint on some sort of fancy radar-absorbing material [60]. Nope. At least not
at first. The primary way stealth aircraft elude radar is by shaping [61–63].

My wife used to haul me and the kids around in a 1990 Volvo 240 wagon. We called it the War
Wagon (Figure 1.17) because it was basically a tank. I don’t think I ever got a speeding ticket driving
it because it just looks so damn sensible and slow, even though it could eventually get up to speed.
We once drove it from Scranton, PA to Rochester, MN in a single day, but that was before we had
kids. Duh.

A boxy Volvo seems simple enough that we could get a feel for what it looks like on radar. Metals
reflect radar like mirrors reflect light. Pretty much any nonmetals in the Volvo will be transparent to
radar. The grill was plastic in 1990, so that is invisible to the radar. Windows are transparent at both
visible and radar wavelengths. Rubber bumper cover and the small amount of plastic ground-effects
equipment, mud flaps, hubcaps, side mirror enclosures, etc. are all invisible. Headlights are plastic,
but the reflector that focuses the light is a metallization so that almost certainly redirects radar
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right back to PoPo. In any event, the radiator that is right behind the plastic grill is big and flat and
reflects the radar, sorry. At least the US-spec license plate hangs down a bit and usually gets bent.
In addition, the steel bumper is only a little bit curved, so it probably gives a pretty strong reflection.

I currently drive a white 2014 Ford Fusion, which is named Whitey Ford even though I root
for the Red Sox. I call it my old man car because it had been my old man’s car and when he died
nobody else in the family wanted it, so I bought it from my mother because it was time for me to
buy a car anyway and it was my fault he bought the car because I read an excellent book [64] about
the turn-around at Ford and passed the book to my father afterward. The car sits low enough to
the ground that my wife fusses at me whenever she rides in it. She’s kind of a car slob anyway, so I
don’t really want her driving it. She has never gotten a speeding ticket.

Sports cars are designed to look like they’re speeding even when they’re standing still because it
sucks to get old and lose your hair. In a speed trap, radar is operating in monostatic mode so the
relatively small radar gun is both transmitting and receiving. Once you know which things reflect
radar (metals) and which things are transparent to radar (nonmetals), you can easily assess the
relative stealthiness of different vehicles.13 Yes, the Corvette is low profile and it’s difficult to get
into, but the real reason that it’s stealthier than my old man car is that the fiberglass bodywork
is transparent and the radiator is tilted back. My car’s radiator is perpendicular to the airflow to
maximize cooling efficiency as I invisibly glide through the speed trap at 69 mph.

Sometimes cars have a bra over the nose to minimize paint chips from pebbles and whatnot.
Putting a bra on a Volvo 240 wagon is ridiculous, which I know because I did that. I considered
going the next step toward radar invisibility by incorporating some wire mesh into the bra so that
it would be reflective. Actually, I considered patenting that concept in the late 1980s until I found
out how much it cost to get a patent.

The point of the above discussion is that reduction of the radar cross section of a vehicle relies
both on choice of materials and shaping. All modern stealth designs are very careful to avoid vertical
flat surfaces and especially right-angle retroreflectors where two flat planes come together to make
an interior corner. Materials also matter quite a lot. Figure 1.18 shows the Horten flying wing,
which is inherently stealthy because it’s largely nonmetallic.14 It also has a fairly stealthy shape.

Figure 1.19 shows a couple of views of the F117 Nighthawk stealth fighter. This aircraft was
developed in secret and used operationally for some years before it was acknowledged to exist. It
was developed and tested and based at the secret airfield in the desert near Roswell, NM, where
people who want you to please go there on holiday and spend tourist dollars say there are probably
flying saucers. Certainly, these flying objects flitting about at dusk would have been unidentified.

I was as surprised as anybody when the F117 was introduced publicly, and I was an Air Force
officer doing radar scattering analysis for a living. There were rumors about a stealth fighter, but we
thought it would be called the F19 and maybe look like the best-selling Testors Model. I didn’t know,
even though the Air Force gave me a medal for writing radar-scattering equations on a chalkboard
during wartime.15 I had a security clearance, of course, but I didn’t have a need to know about the

13 Eugene Knott received his MS in EE from Michigan in 1966 and pursued research in microwaves and radar at
Michigan, Georgia Tech, UTexas Austin, and Boeing. You should get a copy of his “Radar Cross Section
Measurement” (1985) or the update, “Radar Cross Section” that was published in 1993. He died in 2014 at age 82.
14 This can be seen up close at the Udvar-Hazy Center near Dulles Airport. “Raiders of the Lost Ark” in 1981 had a
fight on the ramp around the fictitious “BV-38” flying wing. Indiana Jones backed his opponent into the spinning
propellers with suitable bloodshed. The BV-38 was supposedly based on a Horten test bed from Germany, but it also
borrowed features from several Northrop flying wing prototypes. Jack Northrup didn’t live long enough to see the
B2 Stealth Bomber fly, but before he died, the Air Force read him into the program to show him models and plans.
15 To be fair, it was like the participation trophy in youth soccer. They gave that medal to everybody who was on
active duty during the First Gulf War.
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Figure 1.18 The Horten [65] flying wing would have been quite stealthy even if its wings weren’t made
from plywood. After the war, Reimar Horten said he mixed charcoal dust with wood glue to absorb radar
and shield the aircraft from detection by British radar that operated at 20–30 MHz. Source:
HawkeyeUK/Wikimedia Commons/CC BY-SA 2.0.

Figure 1.19 Most people first became aware of stealth aircraft when the F117A Nighthawk was used to
great effect in Iraq in 1991. The faceted shape is designed to redirect radar, not absorb it. Source: (a) Master
Sgt. Lance Cheung/U.S. Air Force/Wikimedia Commons/Public domain. (b) Senior Master Sgt. Kim Frey/U.S.
Air Force/Wikimedia Commons/Public domain.

top secret operational stealth fighter. I now understand that the faceted nature of the design was
due to the limitations of computers and methods for calculating radar cross section back in the day.

The main thing to notice from the pictures in Figure 1.19 is that there are no flat vertical surfaces
or right angles. The facets do actually line up, so that the incoming radar beam is reflected off into a
few carefully chosen directions, with only diffraction from corners and edges sending radar energy
back toward the transmitter. It’s also a relatively small aircraft, and it turned out to be quite effective
at sneaking unnoticed all the way downtown and using precision munitions to turn off the radars
and antiaircraft installations of adversaries. The infrared camera that it used to sneak about at night
also made for compelling press conferences. You can see an F117 up close in the Cold War Gallery
at the National Museum of the United States Air Force in Dayton, OH. The Testors F19 model kit
might still be available on eBay.

Teenagers these days are all walking around with semidisposable supercomputers in their pock-
ets, which they mostly use to post their brunch to Instagram and make TikTok videos. I’m not quite
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old enough to remember when computer was a job description rather than an electronic machine,
and I missed punch cards by about a year, but I do remember assiduously backing up my com-
puter files onto reel-to-reel tape. I still kind of miss programming in FORTRAN77. I don’t miss
waiting in line at the computer center for a terminal until 4 a.m., so I could get my programming
assignment done.

Back in the day, you had to first identify the components of the scattering that were contributing
to your total radar cross section and then analyze those individual scattering centers. The elegance
of the design of the F117 was not its beauty or aerodynamic performance (it had neither); it was
that from a radar perspective, it was flat plates, edges where flat plates joined at a minimum num-
ber of angles, and corners at the intersection of three plates. Those were doable with the kinds of
computers I remember fondly from my twenties.

Figure 1.20 shows a standard airframe geometry with typical scattering centers and mechanisms
identified. Decades of mental effort documented in innumerable doctoral dissertations was
expended to develop the mathematics and computational methods to understand these sorts of
contributions. Any locally flat surfaces will give rise to specular reflections where the angle of
reflection is equal to the angle of incidence, measured relative to the surface normal at that point.
The facets on a 117A are carefully angled so as to control reflections. Any surfaces at right angles to
each other will give retro-reflections that send the energy right back to the transmitter for a large
range of incident angles. So if you’re going to have horizontal stabilizers, you don’t want anything
vertical. Once those two contributions are minimized, you might think we’re good. Nope. The tip
of the nose of the fuselage will give tip diffraction in pretty much all directions. Both the leading
and trailing edges of the wings and tails will give edge diffractions, which will depend on their
sweep angles. Any corners will give corner diffraction, and any discontinuity in curvature will also
diffract. Any gaps or seams around a door or hatch or control surface will scatter. Engine inlets and
outlets will give cavity returns and maybe even a characteristic doppler signal if the rotating fans
are in view. Some of those contributions are small, of course, but to be truly stealthy they need to
be knocked down systematically. Here’s a couple more that are rather surprising. At certain angles
of incidence, surface waves will be generated. We call them traveling waves if they’re going down
the long axis of a body and creeping waves if they’re going around the short axis. They’ll scatter if
they hit a discontinuity or edge or the back end or whatever. Oh, and if you change materials, that
will also scatter.

Figure 1.21 is a cartoon of my wife’s Volvo, with scattering centers identified. Figure 1.22 shows
what you could do to minimize its radar cross section. The main contribution to radar backscatter-
ing is the radiator and engine block, so you’d want to put an angled reflector in front of that because
tilting the radiator reduces the cooling efficiency. Once that’s taken care of then the next level of
stealthiness comes from preventing scattering inside the passenger compartment; aircraft canopies
solve that problem with a thin metallization layer that is optically transparent but reflective in the
radar threat band. I also noted a few additional steps one could take.

The car I wanted to buy back in the late 1980s was a blue Saab 900S four-door sedan. I thought the
Saab and Volvo would complement each other nicely in my garage. I do understand that there was
a healthy Yankees–Sox sort of rivalry between Volvo and Saab back in the day before they were sold
to China and killed, respectively, by American auto companies, but unlike baseball, you don’t have
to choose sides. Volvos have always been very safe because the founder’s wife was an ER doctor and
presumably she told him over dinner about the mangled after-effects of car crashes she had tried to
humpty-dumpty back together again at work that day. Saabs have always been quirky because they
held onto their form-follows-function aerospace design heritage, which as an aerospace engineer, I
liked quite a lot. If you do the same things for the Saab that I suggested for the Volvo in Figure 1.22,
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Figure 1.20 A simplified cartoon of an air vehicle allows us to consider what geometric features cause scattering.
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Figure 1.21 The primary contribution to radar backscattering for a Volvo 240 wagon is going to be the
radiator and engine block or firewall. The windshield is transparent, of course, so next are probably metal
seat frames and maybe your melon head, especially if it’s covered in tin foil. Metalized coatings on
headlight reflectors might be pretty significant, and of course, the steel bumpers under the rubber coverings
will reflect even though they’re just a bit curved. Then what? I see some corners, which will diffract.
Traveling waves on the long flat roof will diffract from the gap at the tailgate, and the same goes for the
hood. Gaps around doors and body panels will scatter. Wheels would give a Doppler signal if police radar
was that sophisticated, but it’s not.
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Figure 1.22 Step number one, get yourself a windshield with the Quickclear (https://en.wikipedia.org/
wiki/Quickclear) option. The metallic content of the glass has been shown to degrade the performance of
certain windshield-mounted accessories, such as GPS navigators, telephone antennas, and radar detectors,
so we know it will work nicely to keep your melon head from backscattering police radar. Step number two,
get your car a bra which is typically used to protect the paint from pebbles. Carefully peel apart the vinyl
and felt layers and add a layer of wire mesh in between them with a grid spacing less than about a cm, and
put that on the car. Step number three, get yourself some boring flat metal hubcaps and if you really want
to go for broke, replace the side mirrors with cameras and tape over panel gaps with that foil tape HVAC
pros use, hidden under PTA-approved bumper stickers of course. Step number four, drive like a maniac while
rocking that dad bod. In addition, don’t forget to hit a curb to round over your front license plate just a bit.

https://en.wikipedia.org/wiki/Quickclear
https://en.wikipedia.org/wiki/Quickclear
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Transmit/receive Bistatic receive

Target

Figure 1.23 The highly swept planform, carefully aligned facets, screened inlets, metalized glass, etc.
ensure that the head-on RCS of the F117A Nighthawk is minimal because very little of the radar beam is
backscattered. Bistatic radar is a countermeasure to this by trying to pick up those redirected radar echoes
with a second receiver.

you would have a very stealthy daily driver that is as good in the snow as an orange VW Bug but
also has heat. If you’re not familiar with the Saab 900S, look it up. The windshield is quite curved,
so if it’s metallized to reflect radar, it will backscatter almost nothing. Also note how much the
bumper protrudes ahead of the curved nose, so if a mesh-enhanced bra is stretched from below the
ground-effects feature, up over the bumper and partway up the bonnet . . . .

All of the above discussion is based on the assumption that the radar illuminating you is
monostatic. The radar isn’t so much absorbed as it is redirected. An obvious countermeasure to
this is sketched in Figure 1.23 where you transmit from one antenna and record the scattered
radar signals with another antenna someplace else. Stealth is a game of countermeasures and
counter-countermeasures and so on. What you really need is to be able to understand both the
operational mission(s) and the scattering behavior of your vehicle, so you can drive to college and
not get speeding tickets.

1.6 Acoustic Parametric Arrays

By mid-afternoon of 11 September 2001, we had already begun to work out how the kinds of
things that we knew how to do could be adapted to detection of concealed weapons. It was clear
that metal detectors had failed, so technologies were going to be needed to detect nonmetallic
weapons such as ceramic knives. We had been working on a variety of tomographic reconstruction
projects using acoustics, and had begun to explore how sophisticated air-coupled ultrasound in the
50-kHz range might be useful as a mobile-robot navigation sensor. I wrote up a one-page descrip-
tion of my thoughts, a bit of which said, “Ultrasound has an inherent advantage over magnetic and
radar-based imaging techniques which are only sensitive to hidden metallic items. Ultrasound can
just as easily detect hard plastic items hidden about the body. Indeed, ultrasound is just as sensitive
to unfilled gaps as it is to discrete hard objects. Every material – solid, liquid or gas – affects ultra-
sound in a distinct way. Although that physics is extremely complex, our expertise lies in precisely
the esoteric science and technology necessary to harness the complexity and sort it out in com-
puters that are used to automatically process the scan results and identify the suspicious items in
real time.”

We also modified one of our 3D ultrasound scanners to accept transducers in the 20–200 kHz
frequency range and covered a dress-maker’s dummy with tissue-mimicking gel, so that we could
perform experiments in the lab by putting different types of clothing on “no head” with various
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simulated weapons underneath. We came to two very important conclusions. First, it’s hard to
focus the ultrasound beam at any appreciable stand-off distance with even a fairly large transducer
because the wavelength is rather big. Second, the acoustic impedance mismatch between air and
cloth is large enough that most of the ultrasound beam simply reflected from the surface of the
garment. A third conclusion was that the backscattering was really complicated. Part of the answer
turned out to be employing a new technology.

Nonlinear acoustics allows one to make a compact, highly directional loudspeaker called a para-
metric array.16 If you plug your iPod into it it plays music, but you only hear the music if the speaker
is pointed at you. Standard ultrasound transducers are used to transmit an acoustic beam at, for
example, 50 kHz along with another signal at 49 kHz. Directionality will be determined by the size
of the transducer array compared to the wavelength of the ultrasonic beams. Nonlinear effects in
air will then give both the sum and the difference frequencies, 99 and 1 kHz. Since attenuation of
sound goes like frequency squared, the 99 kHz beam will attenuate fairly rapidly while the 1 kHz
audio beam will propagate much, much farther than the original ultrasound beam, while still being
as directional as that ultrasound beam. In order to play music, one of the two ultrasonic beams
is simply modulated so that the difference frequency follows the intended melody. The nonlin-
ear acoustics is complex, but the resulting devices are quite simple except that the nonlinear effect
itself is a function of frequency, so you might need some pretty sophisticated electronics to make the
music sound good. You could also hide a subwoofer under the table when making demonstrations,
Woody.

Our approach to stand-off concealed weapons detection was to use parametric arrays to direct a
narrow, low-frequency beam of sound toward a person’s body. Although the beam of sound is in the
audible frequency range because it’s not pointed at the person’s head, they won’t hear it. The low
frequencies will penetrate the clothing like your neighbor’s bass notes do your apartment’s walls,
and then if there’s a concealed weapon that will backscatter a signal that can be picked up with a
microphone. Figure 1.24 shows two versions.

Figure 1.24 Waveform synthesized via Matlab on laptop and sent via headphone jack to parametric array
which transmits it via nonlinear ultrasonics. Dish collects back-scattered sound from target and sends it to
laptop via microphone jack where Matlab records the digitized waveform for analysis.

16 The parametric array was invented by Peter Westervelt [66] although Woody Norris likes to take credit for it
since he seems to be the first one to make and sell devices commercially, which we bought and used in the aughts
for concealed weapons detection. Joe Pompei started Holosonics after his PhD at MIT on this subject. He built us a
system or two after LRAD took off big and Norris’ company wasn’t interested in R&D anymore. Sennheiser tried to
hire Dr. Pompei and he claims they stole his ideas and then didn’t hire him. More recently, there was a
kickstarter-funded project that called their small unit the Soundlazer.
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As this work progressed and the problem of most interest was suicide bombers approaching
checkpoints, we did systematic experiments and simulations to detect concealed explosives. We
built a custom system with a curved parametric array to focus the beam at 50 ft because you need
to detect the explosive from beyond what is called “the lethal radius,” which I took to mean the dis-
tance at which if a suicide bomber blows himself up, he doesn’t get entrails all over me. Once we
got that system working and were ready to begin collecting systematic data of backscattering from
a variety of simulated weapons and explosives, as well as benign scattering objects under clothing,
our sponsor said, “we meant 50 m, not 50 ft” but then didn’t have the budget for us to build that
prototype. One member of the development team did volunteer to strap on a test article that simu-
lated an explosive and ball bearing-filled jockstrap, and then be scanned with the parametric array
system. I made some excuse to not be available to be there for those tests. We’ll do scattering from
spheres in Chapter 6, BTW.

We later mounted the parametric array and speaker dish on a mobile robot and took rMary out
and about to collect backscattering data from approaching vehicles, as shown in Figure 1.24. The
parametric array projects a narrow acoustic beam down the street and records with the dish micro-
phone the echoes that backscatter from oncoming vehicles up to 50 m away. Since scattering is
strongly frequency dependent, we transmit a linear chirp signal and then use the differences in
backscattering as a function of frequency to distinguish different classes of vehicles. It’s important
when you’re sending a robot out to run an errand for you that the robot watches for traffic and not
get squished.

1.7 Forward to Scattering

What we’ll see in the coming chapters is that radar and sonar and ultrasound and seismology and
optics and a wide variety of other physical phenomena, which are usually considered as distinct
fields of inquiry, can instead be considered as different aspects of the same thing. The field equations
that describe these various wave phenomena are different, of course, but in all cases we ultimately
end up solving wave equations to model wave propagation. That seems obvious, but there are some
subtle differences in wave modes and boundary conditions that will add richness to wave scattering
behavior necessary for our mathematical models to predict actual physical behavior.

The equations and methods of solution that we’re going to be discussing are not new. I didn’t
invent them. I’m not a mathematician. There will be no lemmas, proofs, etc. My goal in this book
is to pass along a way of thinking about all these seemingly disparate subjects, along with some of
the mathematical toolkit that’s necessary to exploit models to understand scattering behavior so as
to be able to exploit them to solve problems in the real world.

We’re mostly going to be doing forward scattering problems and will focus initially on those
canonical geometries where exact solutions are in hand. What we’ll see is that the scattering behav-
ior for even simple situations has a surprising richness to it, and if we try to make the models just
a bit more realistic, we will often end up with equations that are not solvable and thus not all that
useful. We’ll start at about the time Americans were having a Civil War and trying not to drown in
hand-cranked submarines.

In the middle of the 19th century, Alfred Clebsch was trying to mathematically model the refrac-
tion of light by lenses. The electromagnetic theory of light hadn’t been developed yet, so he was
using an elastodynamic theory of the aether to model light propagation and scattering. Much of the
mathematics of what’s now called Mie Scattering hadn’t been worked out quite yet, for example,
the necessary special functions and their properties, so Clebsch had to invent the math to solve the
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problem. In addition, the elastodynamic model of light is unnecessarily cumbersome, particularly
the boundary conditions which couple the longitudinal and transverse wave modes at an interface.

In the late 1980s when I was doing scattering research for the Air Force, the USAF Geophysics
Library had a robust enough collection that when I needed to read Clebsch’s 1861 paper, I sim-
ply fetched that journal volume from the stacks and gingerly photocopied it. I then manually
transliterated it (and Mie’s famous 1908 paper) from German so I could follow the mathemati-
cal development. The scattering literature over the last half of the 19th century was surprisingly
interesting to read, as people realized that the electromagnetic theory of light worked so much bet-
ter than elastodynamics. There’s even a 1900 paper by Lamb [67] with a disclaimer to the effect:
I worked on this elastodynamic model for a very long time and I realize that the electromagnetic
model is better in every way, but I’m publishing this anyway in case someday somebody might find
it useful. I guess publish or perish has always been a thing. I do hope you find some of the rest of
this book helpful.
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2

Field Equations

2.1 Index Notation

We will need to introduce tensor notation in order to conveniently write the equations that
describe elastic waves in solids. Tensors aren’t anything all that mysterious, but are just a con-
venient notation to keep track of things with multiple components and then write complicated
equations without having to write everything out in their components. If you find yourself starting
to develop a mental block, think back to when you first learned about vectors in elementary
physics. Once you grasped the concept, there was no turning back because vector notation is
so incredibly useful. If you don’t believe me, go try reading a 19th century book on elasticity or
something and see if you can resist the temptation to scribble in the margins the vector notation
versions of all the equations that are written out fully in components. Of course, not everybody
gets the concept of vectors; some of your classmates in elementary physics did quite poorly because
of that. That there are two different ways to multiply vectors is a pretty strange concept, after all,
but don’t get too smug because the animal that mathematicians were using prior to Gibbs’ vectors
were called quaternions.1 They really suck.

Since you long since came to love them, consider the vectors a⃗ and x⃗ where

a⃗ =
⎧⎪⎨⎪⎩

a1
a2
a3

⎫⎪⎬⎪⎭ x⃗ =
⎧⎪⎨⎪⎩

x1
x2
x3

⎫⎪⎬⎪⎭ (2.1)

Now form the dot product a⃗ ⋅ x⃗ = p = a1x1 + a2x2 + a3x3, where p is a scalar. Instead of the arrow
to signify a vector, we can use an index “i” for the vectors

ai =
(

a1, a2, a3
)

xi =
(

x1, x2, x3
)

(2.2)

and the dot product is
∑3

i=1 aixi = p. Since in 3D vectors will always have three components, we
don’t really have to write the summation

aixi ≡ a1x1 + a2x2 + a3x3 = p (2.3)

Einstein gets credit for both recognizing that it’s not necessary to write the summation and for
being so highly regarded that people went along with it. The “Einstein Summation Convention”

1 Not everyone loved vectors. Peter Guthrie Tait said that “Professor Gibbs must be ranked as one of the retarders of
Quaternion progress, in virtue of his pamphlet on Vector Analysis, a sort of hermaphrodite monster, compounded of
the notations of Hamilton and of Grassmann.”
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says that pairs of repeated indices are summed over the range 1–3. It works for all sorts of vector
operations, such as the magnitude of a vector ||u⃗||2 = u2

1 + u2
2 + u2

3 = uiui.
Now flashback to learning about matrices and linear algebra, which probably involved lots of

painful proofs, but matrices are useful enough that you made it through and don’t have to do proofs
anymore. Index notation makes linear algebra actually pretty fun. Consider the matrix A:

A =
⎡⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎦ = Aij (i, j = 1, 2, 3) (2.4)

and write

Aijuj =
⎡⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

A11u1 + A12u2 + A13u3

A21u1 + A22u2 + A23u3

A31u1 + A32u2 + A33u3

⎫⎪⎬⎪⎭ (2.5)

Note that we have summed the repeated index and that the resulting quantity is a vector. It has
three components.

An index that is repeated (and hence summed) is called a dummy index. An index that is not
repeated is called a free index. The number of free indices determines what the quantity is:

scalar∶ 0 free indices

vector∶ 1 free index

matrix∶ 2 free indices (3 × 3)

array∶ 3 free indices (3 × 3 × 3)

The cool part is you can have as many indices as you want as long as the repeated ones are
summed. Here’s a correct equation

Aijk = BijklmnClmn = xiyjzk (2.6)

In any equation, each term must be the same tensor animal, that is, have the same number of
free indices. It’s also very important to only repeat indices twice! I mean once. Repeat once, which
means using them twice. Don’t over think it, like I just did.

We need two special symbols to be able to do vector and tensor analysis: 𝛿ij and 𝜀ijk. The Kronecker
delta is defined such that

𝛿ij = 1 for i = j 𝛿ij = 0 for i ≠ j

Watch the following ui𝛿ij = u1𝛿1j + u2𝛿2j + u3𝛿3j but j takes on the values 1, 2, 3

j = 1∶ ui𝛿i1 = u1𝛿11 + u2𝛿21 + u3𝛿31 = u1

j = 2∶ ui𝛿i1 = u1𝛿12 + u2𝛿22 + u3𝛿32 = u2

j = 3∶ ui𝛿i3 = u1𝛿13 + u2𝛿23 + u3𝛿33 = u3

We could have merely written ui𝛿ij = uj. Hence the Kronecker delta is just the identity matrix

I =
⎡⎢⎢⎣
𝛿11 𝛿12 𝛿13
𝛿21 𝛿22 𝛿23
𝛿31 𝛿32 𝛿33

⎤⎥⎥⎦ =
⎡⎢⎢⎣

I11 I12 I13
I21 I22 I23
I31 I32 I33

⎤⎥⎥⎦ ≡ 𝛿ij (2.7)



2.2 Stress Is Force per Unit Area 37

The permutation symbol 𝜀ijk is defined as:

𝜀123 = 𝜀231 = 𝜀312 = +1 𝜀321 = 𝜀132 = 𝜀213 = −1

𝜀ijk = 0 for any indices the same

The cross product is written in index notation as 𝑤k = 𝜀ijkui𝑣j ≡ 𝜀kijui𝑣j.

Exercise 2.1 Expand out the components to show that this is identical to 𝑤⃗ = u⃗ × 𝑣.

Note that i and j are repeated so we can pedantically write

𝑤k =
3∑

i=1

3∑
j=1
𝜀ijkui𝑣j ≡ 𝜀kijui𝑣j (2.8)

which is a pain to do, but then most of the terms will be hard zero.
We can now write divergence and curl by thinking of the gradient as a “vector operator” ∇⃗ → 𝜕

𝜕xi
and thus get

∇⃗ ⋅ 𝑣 ⇒
𝜕𝑣i

𝜕xi
=
𝜕𝑣1

𝜕x1
+
𝜕𝑣2

𝜕x2
+
𝜕𝑣3

𝜕x3
(2.9)

∇⃗ × 𝑣⇒ 𝜀ijk
𝜕

𝜕xj
𝑣k (2.10)

∇𝜙⇒
𝜕

𝜕xi
𝜙 (2.11)

We also have one identity that often helps to simplify expressions

𝜺ijk𝜀ist = 𝛿js𝛿kt − 𝛿jt𝛿ks (2.12)

You should remember this identity, or at least remember about it and where to find it.2 I put it in
bold font in case you’re trying to find it here later.

Some authors use a comma to indicate the gradient operator: 𝜕uk
𝜕xj

≡ uk,j which I never do because
my handwriting is messy and my commas look just like a j or sometimes even an i if I get really
sloppy. The shorthand that I especially like is to write 𝜕i instead of 𝜕

𝜕xi
which is what I’ll usually do.

2.2 Stress Is Force per Unit Area

2.2.1 Two-Question Pop Quiz, Pass–Fail

Q#1: I’m going to poke you with a pencil. Which end do you choose? If you chose the eraser, you pass.
If you chose the pointy end, you’re an idiot. Assuming I poke you with the same force either way,
the eraser is better for two reasons. The main one isn’t that the eraser is soft, although that does
matter a bit. It’s that the eraser has a large cross-sectional area compared to the pointy end, and so

2 “Div, Grad, Curl, and All That” by H. M. Schey is a lovely little book of vector calculus, helping science and
engineering students master gradient, curl, and Laplacian operators without the required knowledge of advanced
mathematics. It’s been around for decades, and if you’re a little fuzzy on vector calculus you should find yourself a
copy. I know students like this book a lot because they keep borrowing my copy and so I buy another one. In
addition, don’t be shy about looking up video lectures online when some bit of math is a little fuzzy. What we’re
going to do is quite mathy, and you don’t want that to hold you back.
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the force of the poke is spread out over a larger area. The sharpened end will concentrate the force
of the poke over a much smaller area, and if it’s really sharp, or I poke you just a bit too hard, the
pointy end will puncture your skin and the lead might even break off inside of you. It would hurt,
but don’t worry about lead poisoning because pencil lead is just graphite and not lead. I used to be
concerned about that because I have had a piece of pencil lead under the skin on the heal of my
right hand since junior high school. In the 1970s, gasoline had lead in it, BTW.

Q#2: When constructing a bed of nails, what’s the primary safety consideration? I’ll give you a hint,
it’s not making sure that the nails are disinfected or that the nails are all blunted. Ready? The answer
is to make sure that all the nails are at exactly the same height so that your weight is spread out
over them evenly. One nail that sticks up higher than the rest would take too much of your weight
and would injure you. When lying on a bed of nails it’s pretty important to spread your weight out
as much as possible. It also helps to not have the Jimmy legs.3 You should try not to sneeze, and
think carefully about how you’re going to get back up again.

If you passed the pop quiz, then you have some understanding that stress might be a more impor-
tant quantity than force when what you care about is the deformation of materials, and I hope you
now have some mental images to remind you that: stress is force per unit area. Consider a block of
some material in static equilibrium under the action of equal and opposite forces (Figure 2.1). If
the magnitude of the forces is F and the area of the faces on which they’re acting is A, then we can
define the stress on each of those two faces as 𝜎 = F∕A.

We’re going to call this stress the “normal” stress when the forces F are normal to the surfaces
with area A. At this point, I’m hoping that you didn’t just skim over the mathematical preliminaries
because we’re about to need tensors. The reason is that in the definition of stress, we have to keep
track of the orientations of both the force and the area we’re talking about. To wit, consider the same
block of material which is under the action of equal and opposite forces that are still of magnitude
F but now are tangent to the surfaces A instead of perpendicular to it (Figure 2.1, right). We can still
talk about force per unit area, but the stress is fundamentally different. Go find a piece of something
soft like some foam or a marshmallow and play with it a bit if this isn’t yet obvious. The equal and
opposite tangential forces will shear the block instead of squishing it, so we’re going to call this
force per unit area the “shear” stress, 𝜏 = F∕A. The units are still going to be pounds per square
inch (psi), which are familiar from air pressure in tires and such, or Newtons per square meter
(N∕m2), which are Pascals (Pa) in the metric system.

“Without the slightest warning he leaped at me, snatching an object from the table. Before I
could take a backward step I felt a needle plunge deep into my arm, and cried out with the pain of

F

F

F

FF

F

A

A

A
Figure 2.1 Stress is force per unit area. Normal stress on the left.
Shear stress is also force per unit area, but there are two tangential
directions for F.

3 Now that there’s an expensive prescription drug to treat Jimmy legs, we’re supposed to call it by the medical name
of Restless Leg Syndrome or RLS.



2.2 Stress Is Force per Unit Area 39

it. Things became hazy, distorted. A wave of vertigo swept over me. Then it passed, and my vision
cleared. The Professor stood leering before me.”

That’s from “He Who Shrank” by Henry Hasse, a science fiction story that first appeared in
the August 1936 issue of Amazing Stories magazine. The story’s narrator tells how his employer,
the Professor, the world’s greatest scientist, has devised a formula that will cause a man to
continuously shrink in size, allowing him to explore the subcosmic universe. The idea is that each
of the atoms that make up the stuff in your world are in fact the solar systems of some galaxy at the
next level down. That marshmallow you were just squishing is somebody else’s Milky Way galaxy,
etc. Of course, the Bohr model of the atom isn’t used anymore now that we have proper quantum
mechanical descriptions of energy levels, shells, etc. Curiously, most of the solid stuff around you
seems to be emptiness, so that inner space actually is kind of like outer space. You’d be right if you
thought the Professor’s research assistant was freaked out about this when he started to shrink, but
the Professor had thought of this: “You will be quite safe in airless space,” he went on. “In the thirty
years I have worked on the problem, I would not be likely to overlook that point – though I will
admit it gave me much trouble. But as I said, ‘Shrinx’ is all the more marvelous in the fact that its
qualities are many. After many difficulties and failures, I managed to instill in it a certain potency
by which it supplies sufficient oxygen for your need, distributed throughout the bloodstream. It
also irradiates a certain amount of heat, and inasmuch as I consider the supposed sub-zero temper-
ature of space as being somewhat exaggerated, I don’t think you need worry about any discomfort
in open space.”

I often tease my materials science colleagues by telling them that I don’t believe in atoms. I
say it often enough and mention it casually with apparent seriousness; I’m pretty sure some of
them aren’t really sure about me. What I’d like you to do at this point is to pretend that there’s no
such thing as atoms and that the solid stuff around you isn’t in fact mostly empty (inner) space.
Then I want you to imagine the blocks of stuff in equilibrium under the action of equal and oppo-
site forces (Figure 2.1) starting to shrink. Of course, the areas A will shrink in proportion, and if
you like imagine that the forces F are reduced during this process so as to make the stresses 𝜎
and 𝜏 stay at the same numerical value. Keep going, so the blocks are now more appropriately
described as infinitesimal rectangular parallelepipeds (which I’m pretty sure you can’t say twelve
times fast) and then keep on going down past the length scale were the lumpiness of atoms would
start to show up if one believed in that sort of thing. If you wish, you can imagine everything
shrinking down to where an individual atom becomes a solar system and then down into some
marshmallow on that world where an atom there becomes a solar system and on that earth there’s
a marshmallow, etc. until you run out of marshmallows. The little blocks of stuff are now mathe-
matical points, and the cool part is that ignoring the atomic nature of our world allows us to define
stress at a mathematical point. Since stress is force per unit area, you have to formally do some
limiting process because you obviously can’t divide by a zero area, but that limit turns out to
work just fine.

In general, all six faces of our infinitesimal rectangular parallelepiped will be subjected to one
normal and two shear stresses, with each of the faces designated by their outer normal vectors.
Since there are nine stress components to keep track of, it makes sense to do it in a 3 × 3 matrix:

𝜏ij =
⎛⎜⎜⎝
𝜏11 𝜏12 𝜏13
𝜏21 𝜏22 𝜏23
𝜏31 𝜏32 𝜏33

⎞⎟⎟⎠ (i, j = 1, 2, 3) (2.13)

You may have noticed that I’ve used 𝜏 for both shear and normal stresses. Some books use 𝜎 for
both. Some are careful to use 𝜎 for normal stresses and 𝜏 for shear stresses. I reserve the right to use
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τ22

x2

x3

x1

τ21τ23

τ32

τ12

τ13

τ11τ31

τ33

Figure 2.2 The indices on the stress components
indicate the direction of the surface normal and the
direction of the stress component, respectively.

whichever happens to suit my fancy at a particular moment, trusting that you’ll pay attention to the
indices. If they’re the same, then the direction of the force and the surface normal are the same, so
we’re talking about a normal stress. If the two indices are different, then the force is tangential to
the surface and we’re talking about shear stresses. In the matrix, the normal stresses are obviously
on the diagonal, while the shear stresses are the off-diagonal terms.

Now let’s use this to derive something useful. Consider again an infinitesimal rectangular paral-
lelepiped (Figure 2.2), but now subjected to three stress components on each face as well as some
body force like gravity or magnetic pull or something. Let’s generalize it just a bit by defining the
lengths of each of the three sides as dx1, dx2, and dx3 and assume for completeness that the body
force (per unit volume) also has three components X1, X2, and X3. At this point you probably want
to think of this as an internal bit of a larger chunk of stuff that is being deformed somehow. I’m
assuming you already ate all the marshmallows, so look around for something else squishy that’s
being squished in a complicated manner. If you’re sitting in a comfy chair, it’s the cushion. If you’re
sitting on a wooden bench, it’s your buttocks. If you’re lying on a bed of nails, you’re taking this
all too literally. Each little piece of that larger object is being pressed upon in a complicated way by
the adjacent parts, and each independently feels gravity and other body forces. If you’ve drawn a
blank, I want you to imagine a great big fat guy4 riding a roller coaster next to you. I mean really
fat. It took two attendants to push with all their might to get the restraint to snap shut which will
hopefully hold him securely throughout the ride because he’s really wedged in there. As the coaster
goes through loops and corkscrews that part of your seatmate that is spilling over into your per-
sonal space is going to be pressing on you in a complex manner. Gravity and inertia are also going
to be affecting both of you, which is pretty much the point of roller coasters after all.

The point of that mental exercise was for you to get a mental picture of a deformable body with a
complex three-dimensional stress distribution. That little block of material (e.g. undigested marsh-
mallow) you imagine deep inside somewhere will have stresses on each face, but opposite faces will
be just a bit different from each other. So, if 𝜏11(x1, x2, x3) is the normal stress on the “left” face as

4 I was a big fat guy while in my early 40s, but then stopped eating crap like marshmallows and dropped 30% of my
body weight in four months. My wife and her friends were all mad at me because I apparently made losing weight
look too easy. After more than 15 years, my wife is still butthurt that I don’t eat pie. Since alcohol is also empty
calories, I gave up drinking more than a decade ago, so I’m pretty much no fun. My wife can attest to that.
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x2

dx2

x3

dx3

x1

X1

dx1

τ21

τ11
τ11+

∂τ11

∂x1

dx1

τ21+
∂τ21

∂x2

dx2

τ31+
∂τ31

∂x3

dx3

τ31

Figure 2.3 Force is stress times area. The surface stresses in the x1-direction are shown. There is also a
body force per unit volume X1 indicated as well.

shown in Figure 2.3, then the normal stress on the opposite face is only a little bit different because
the rectangular parallelepiped is infinitesimal

𝜏11(x1 + dx1, x2, x3) = 𝜏11(x1, x2, x3) + dx1
𝜕𝜏11

𝜕x1
(x1, x2, x3) + H.O.T. (2.14)

with the higher-order terms small enough that we can neglect them. Since stress is force divided
by area, force is stress times area. The diagram in Figure 2.3 shows the stress components that act
in the x1 direction, along with that component of the body force which we have to multiply times
volume, of course. For equilibrium, forces sum to zero in each direction, and for the x1 direction
this gives(

𝜏11 +
𝜕𝜏11

𝜕x1
dx1

)
dx2dx3 − 𝜏11dx2dx3 +

(
𝜏21 +

𝜕𝜏21

𝜕x2
dx2

)
dx1dx3

−𝜏21dx2dx3 +
(
𝜏31 +

𝜕𝜏31

𝜕x3
dx3

)
dx1dx2 − 𝜏31dx2dx3 + X1dx1dx2dx3 = 0

Dividing by dx1dx2dx3 is no problem because infinitesimally small is not zero, so doing that gives

𝜕𝜏11

𝜕x1
+
𝜕𝜏21

𝜕x2
+
𝜕𝜏31

𝜕x3
+ X1 = 0 (2.15)

and repeating the procedure for the x2 and x3 directions gives

𝜕𝜏21

𝜕x1
+
𝜕𝜏22

𝜕x2
+
𝜕𝜏32

𝜕x3
+ X2 = 0 (2.16)

𝜕𝜏31

𝜕x1
+
𝜕𝜏23

𝜕x2
+
𝜕𝜏33

𝜕x3
+ X3 = 0 (2.17)

or, in our beloved index notation

𝜕𝜏ij

𝜕xj
+ Xi = 0 (2.18)
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Figure 2.4 Moment is force times distance,
so it’s then distance times stress times area.
The surface stresses in the x1- and
x2-directions are shown, which will give
moments about the x3-axis. There are also
body forces per unit volume X1 and X2
indicated as well that will give moments
about the x3-axis.

which is important enough that it gets a name: The Equations of Equilibrium. Of course I prefer to
write them as:

𝝏j𝜏ij + Xi = 0 (2.19)

D’Alembert’s principle says that any little piece of a fat guy on a rollercoaster in motion may be
considered to be in equilibrium if we write Xinertial

i = −𝜌ẍi so we can include this as one part of the
body force to get our equation of motion for elastodynamics

𝝆ẍi = 𝜕j𝜏ij + Xbody
i (2.20)

which is the version of F⃗ = ma⃗ that we will use, although Xbody
i ≡ 0 for almost all of the applications

we’ll consider.

Exercise 2.2 Write out the equation of motion in Cartesian coordinates. Be amazed at how much
easier our life is with index notation.

Exercise 2.3 By summing moments (
∑

M = 0) about Ox1, Ox2, and Ox3 show that the stress ten-
sor is symmetric: 𝜏ij = 𝜏ji. Hint: The components of stresses that contribute moments about the
x3-axis are shown in Figure 2.4.

2.3 Strain Is Dimensionless

In everyday language, the words stress and strain mean the same thing. Not for us. For most people,
being strained means doing something that is hard or tires them out or otherwise pushes their
limits, causing them stress and needing a neck rub or perhaps a vacation at a spa. Here, a body
is said to be strained (or deformed) when the relative positions of points in the body are changed.
The displacement of a point is defined as the vector distance from the initial to the final location of
the point. If u⃗ = (u, 𝑣, 𝑤) is the displacement (vector) field, then (x, y, z) is displaced to (x + u, y +
𝑣, z +𝑤). The one-dimensional case is shown in Figure 2.5, but you can experience this for yourself
by tying three rubber bands together and naming the two knots A and B.
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Figure 2.5 Normal strain is change in length per unit
length. dx

u

x

A B

A' B'

u+ ∂u
∂x

dx

dx+ ∂u
∂x

dx

After a stress is applied (e.g. by stretching the tied rubber bands from the far ends), the points A
and B move to new positions A′ and B′ and the length AB changes from dx to dx + 𝜕u

𝜕x
dx. We define

strain as the unit change in length

𝜖x =

(
dx + 𝜕u

𝜕x
dx
)
− dx

dx
≡
𝜕u
𝜕x

(2.21)

Now consider the 2D case of plane strain, where u = u(x, y), 𝑣 = 𝑣(x, y), and 𝑤 = 0 and where
an infinitesimal rectangle ABCD is deformed to a rotated parallelogram A′B′C′D′ as shown in
Figure 2.6. Note that the sides change length; the sides rotate with respect to each other.

Normal strain is a change in length per unit length as before, but now we have to define a shear
strain to describe the sort of distortion caused by shear stresses. At this point, please shoot the
rubber band across the room and forget all about it. Also, forget about the marshmallows and fat
guys on roller coasters because those sorts of things deform in ways that are too complicated for us
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Figure 2.6 Shear strain is change from a rectangle to a parallelogram.
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at this point. In a word, they exhibit nonlinear strain and we’re about to linearize our equations,
so we’ll end up with something useful. Later on, I promise we’ll add back in some nonlinearity
when particular applications need it, but you have to trust me on this one because it would be
really frustrating if a couple of pages from now we derived equations that turned out to be too
complicated to be usable. Here are our normal strains in the x and y directions

𝜖x = A′B′ − AB
AB

= A′B′ − dx
dx

(2.22)

𝜖y =
A′D′ − AD

AD
=

A′D′ − dy
dy

(2.23)

which allow us to write the lengths squared

(A′B′)2 = [dx(1 + 𝜖x)]2 =
(

dx + 𝜕u
𝜕x

dx
)2

+
(
𝜕𝑣

𝜕x
dx
)2

(2.24)

(A′D′)2 = [dy(1 + 𝜖y)]2 =
(

dy + 𝜕𝑣

𝜕y
dy
)2

+
(
𝜕u
𝜕y

dy
)2

(2.25)

or

𝜖
2
x + 2𝜖x + 1 = 1 + 2𝜕u

𝜕x
+
(
𝜕u
𝜕x

)2
+
(
𝜕𝑣

𝜕x

)2
(2.26)

𝜖
2
y + 2𝜖y + 1 = 1 + 2𝜕𝑣

𝜕y
+
(
𝜕𝑣

𝜕y

)2

+
(
𝜕u
𝜕y

)2

(2.27)

For small strains of the type you might get with piano wire instead of rubber bands and rocks instead
of marshmallows, we can happily drop the second order terms to get

𝜖x = 𝜕u
𝜕x

𝜖y =
𝜕𝑣

𝜕y
(2.28)

Shear strain is here defined as the change in the right angle between any two sides of ABCD mea-
sured in radians. Referring to the diagram, we can write it

𝛾xy =
1
2

(
𝜋

2
− 𝛽
)
= 1

2
(𝜃 + 𝜆) (2.29)

where we again invoke the smallness of strains to write

tan 𝜃 ≈ 𝜃 =
𝜕𝑣

𝜕x
dx

dx + 𝜕u
𝜕x

dx
=

𝜕𝑣

𝜕x

1 + 𝜕u
𝜕x

(2.30)

Neglecting 𝜕u
𝜕x

compared to unity, we have 𝜃 = 𝜕𝑣

𝜕x
and similarly 𝜆 = 𝜕u

𝜕y
gives

𝛾xy =
1
2

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)
(2.31)

In the 3D case, the strains are

𝜖x = E′F′ − EF
EF

= A′B′ − AB
AB

= H′G′ − HG
HG

= D′C′ − DC
DC

(2.32)

𝛾xy =
(
𝜋

2
− ∠F′E′H′

)
=
(
𝜋

2
− ∠F′G′H′

)
= · · · (2.33)
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Figure 2.7 Shear strain in 3D is changed
from a cube to a rhomboid, which may or
may not be a word. Note that rigid body
motion – translation and/or rotation – is not
included in strain because strain is just
normalized deformation.
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A'
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H G
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Exercise 2.4 Draw the many triangles and such to go along with Figure 2.7 and then go through
the analysis step by step to show that the nine components of strain are

𝜖x = 𝜕u
𝜕x

𝛾xy =
1
2

(
𝜕u
𝜕y

+ 𝜕𝑣

𝜕x

)
≡ 𝛾yx

𝜖y =
𝜕𝑣

𝜕xy
𝛾yz =

1
2

(
𝜕𝑣

𝜕z
+ 𝜕𝑤

𝜕y

)
≡ 𝛾yx

𝜖z =
𝜕𝑤

𝜕z
𝛾xy =

1
2

(
𝜕𝑤

𝜕x
+ 𝜕u
𝜕z

)
≡ 𝛾yx

We can use index notation to write a strain tensor 𝜖ij, which is related to the displacement vector
ui by

𝝐ij =
1
2

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)
(2.34)

Note that stress and strain are both second-rank tensors.

2.4 Stress Is Proportional to Strain

Remember that rubber band you shot across the room not that long ago? If not, go find another one
and play with it a little bit. If you happen to have a spring at hand that would be even better, but
don’t get distracted rooting around for one. Recall from elementary physics that we classify springs
according to their “spring constants” and that stiffer springs are harder to stretch than wimpier
ones because their spring constants are larger. Recall also that if you pull twice as hard on a spring,
it stretches twice as far and pulling four times as hard stretches it four times as much. Sorry if you
just broke your rubber band, but it’s OK because we’re done with it for real this time. All you need
to remember is that for linear springs, the force and displacement are proportional, with a constant
of proportionality given by the spring constant. In Latin that’s Ut tensio, sic vis meaning “As the
extension, so the force,” which British physicist Robert Hooke first published in 1660 as a Latin
anagram, but we call it Hooke’s law anyway.

There’s a lovely discussion of the discovery of Hooke’s law and related concepts in the book by
J.E. Gordon, “Structures: Or Why Things Don’t Fall Down,” which I highly recommend. It’s for
anyone who has ever wondered why suspension bridges don’t collapse under eight lanes of traf-
fic, how dams hold back – or give way under – thousands of gallons of water, or what principles
guide the design of a skyscraper, a nightgown, or a kangaroo. It’s a quite readable explanation of
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the basic forces that hold together the ordinary and essential things of this world – from buildings
and bodies to flying aircraft and eggshells. For architects and engineers there are cogent explana-
tions of the concepts of stress, shear, torsion, fracture, and compression, and chapters on safety
design and the relationship of efficiency to aesthetics. If you are building a house, a sailboat, or
a catapult, here is a handy tool for understanding the mechanics of joinery, floors, ceilings, hulls,
and masts – or flying buttresses. In my structures class, I have the students buy this book and then
ask them on the final exam what their favorite part was, which is easy to answer if you’ve read
the book.

Back to stress and strain, which turn out to be proportional as well, although because they are
tensors, there will be a tensor of proportionality constants. The generalized Hooke’s law is

𝝈ij = Cijkl𝜖kl (2.35)

where Cijkl is obviously a fourth-rank tensor because it has four indices. It turns out not to be
quite so terrible because most of the complexity is there to allow for materials with different stiff-
nesses in different directions. Wood has different properties along the grain than it does across the
grain, for example, but even that anisotropy isn’t especially extreme. Modern aircraft and expen-
sive sports equipment are often made from graphite-epoxy composites instead of metals, and these
engineered materials often have their stiffness properties tailored to optimize performance. In
extreme cases, there might be as many as nine different stiffnesses to measure and then keep track
of in Cijkl.

Much of the time, however, we don’t have to worry about stiffnesses being different in different
directions and can happily assume that the materials we’re dealing with are isotropic. In this case,
we only have to worry about two stiffnesses and Cijkl takes on the form

Cijkl = 𝛿ij𝛿kl𝜆 +
(
𝛿ik𝛿jl + 𝛿il𝛿jk

)
𝜇 (2.36)

where 𝜆, 𝜇 are the Lamé parameters. They are related to the commonly used Poisson’s ratio, 𝜈,
Young’s modulus, E, and bulk modulus, K according to

𝜆 = 2𝜇𝜈
1 − 2𝜈

= 𝜇(E − 2𝜇)
3𝜇 − E

= K − 2
3
𝜇 = E𝜈

(1 + 𝜈)(1 − 2𝜈)

= 3K𝜈
1 + 𝜈

= 3K(3K − E)
9K − E

𝜇 = 𝜆(1 − 2𝜈)
2𝜈

= 3
2
(K − 𝜆) = E

2(1 + 𝜈)
= 3K(1 − 2𝜈)

2(1 + 𝜈)
= 3KE

9K − E

𝜈 = 𝜆

2(𝜆 + 𝜇)
= 𝜆

3K − 𝜆
= E

2𝜇
− 1 = 3K − 2𝜇

2(3K + 𝜇)
= 3K − E

6K

E = 𝜇(3𝜆 + 2𝜇)
𝜆 + 𝜇

= 𝜆(1 + 𝜈)(1 − 2𝜈)
𝜈

= 9K(K − 𝜆)
3K − 𝜆

= 2𝜇(1 + 𝜈)

= 9K𝜇
3K + 𝜇

= 3K(1 − 2𝜈)

K = 𝜆 + 2
3
𝜇 = 𝜆(1 + 𝜈)

3𝜈
= 2𝜇(1 + 𝜈)

3(1 − 2𝜈)
= 𝜇E

3(3𝜇 − E)
= E

3(1 − 2𝜈)
𝜇

𝜆 + 𝜇
= 1 − 2𝜈 𝜆

𝜆 + 2𝜇
= 𝜈

1 − 𝜈
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The first of the two Lamé5 parameters, 𝜆, doesn’t have a physical interpretation, sorry. It’s also
kind of hard to find values for it in books, presumably for the reason that engineers tend to
measure things that make sense physically rather than those parameters that show up due to
fundamental mathematical properties of tensors. Hence the reason for the conversion table is
that these are the parameters that you’ll find most easily and then you’ll have to convert to the
ones that go into the formulas. Note that the second of the two Lamé parameters, 𝜇, is often
called the modulus of rigidity and many books will use the symbol G for it. If you subject a
rod or shaft to equal and opposite torques at its ends, the modulus of rigidity is the constant of
proportionality between the magnitude of the torques and the amount of twist. Poisson’s ratio, 𝜈,
comes into play when you stretch a rubber band or squish down on a marshmallow. The rubber
band contracts laterally and the marshmallow bulges out. Lateral strain is the contraction/bulging
compared to the original width. Axial strain is the squished/stretched length compared to the
undeformed state.

Poisson’s ratio is the lateral strain divided by the axial strain, and it’s always a number between
zero and one-half unless you construct some weird meta-material that bulges when you stretch it
and contracts when you squish it in which case the Poisson’s ratio would be negative. Go ahead
and get yourself another marshmallow. You don’t need to feel guilty about empty calories in the
name of science.

The bulk modulus, K, of a substance measures its resistance to uniform compression. It is defined
as the pressure increase needed to decrease the volume by a factor of 1∕e. For example, if you took
your marshmallow down deep in the ocean where the pressure is immense, it will retain the same
shape but will get tiny and then presumably soggy and salty. Conversely, if you took your marsh-
mallow up (or down) into empty space where there is no atmospheric pressure, it will enlarge.
Unless you injected it with Shrinx, of course.

2.5 Elastic Waves

We can take our three main equations

𝜌𝜕
2
t ui − 𝜕j𝜎ij = 0 𝜎ij = Cijkl𝜖kl

𝜖kl =
1
2
(
𝜕kul + 𝜕luk

)
where

Cijkl = 𝛿ij𝛿kl𝜆 +
(
𝛿ik𝛿jl + 𝛿il𝛿jk

)
𝜇

and plug and chug to derive Navier’s equation

𝝆𝜕2
t ui − 𝜇𝜕2ui − (𝜆 + 𝜇)𝜕i(𝜕juj) = 0 (2.37)

In vector notation, this becomes

𝜌𝜕
2
t u⃗ − 𝜇∇2 − (𝜆 + 𝜇)∇(∇ ⋅ u⃗) = 0 (2.38)

5 Gabriel Lamé was a French mathematician whose most significant contribution to engineering was to accurately
define the stresses and capabilities of a press fit joint, such as that seen in a dowel pin in a housing. His is one of the
72 names inscribed on the Eiffel Tower, which is held together by dowel pins in housings. https://en.wikipedia.org/
wiki/Gabriel_Lam%%;C3%%A9.

https://en.wikipedia.org/wiki/Gabriel_Lam%%C3%%A9
https://en.wikipedia.org/wiki/Gabriel_Lam%%C3%%A9
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Navier’s equation6 is the basic wave equation for elastodynamics in isotropic media. Since we care
most about wave behavior, it’s usually convenient to suppress the e−i𝜔t harmonic time variation,
and do our analysis in frequency domain. This allows us to write a vector wave equation of the
form (

∇2 + K2) u⃗ −
(

1 − k2

K2

)
∇(∇ ⋅ u⃗) = 0 (2.39)

where K = 𝜔∕cT and k = 𝜔∕cL are transverse and longitudinal wave numbers, respectively. The
wave speeds are defined in terms of the Lamé parameters as:

c2
L = (𝜆 + 2𝜇)∕𝜌 c2

T = 𝜇∕𝜌 (2.40)

This wave equation is kind of a pain, so we do a Helmholtz decomposition. Clebsch’s theorem7

tells us that any vector field can be decomposed into two parts, one which has no curl and one
which has no divergence. We therefore write

u⃗ = u⃗L + u⃗T = ∇𝜙 + ∇ × A⃗ (∇ ⋅ A⃗ = 0) (2.41)

Note that∇ × u⃗L ≡ 0 and∇ ⋅ u⃗T ≡ 0 by definition. Plugging into the vector wave equation thus gives
us scalar wave equations, one for the scalar potential function 𝜙 and two for the components of the
vector potential function A⃗(

𝛁𝟐 + k𝟐)
𝜙 = 𝟎

(
𝛁𝟐 + K𝟐)AI,II = 𝟎 (2.42)

Note that these are both the same equation, named the Helmholtz equation, but with different wave
numbers. Often called the scalar wave equation, we can conclude at this point that elastic waves
come in two types. We’ll often call them Longitudinal and Transverse waves because in longitudinal
waves the vibration of media is in the direction of propagation, whereas for transverse waves, the
vibration of media is perpendicular to the direction of propagation (Figure 2.8). Seismologists call
them the Primary and Secondary waves, since the faster P-wave gets to you first and is followed by
the slower S-wave. We could also call the L-wave a compressional wave since the physical deforma-
tion is an alternating compression and rarefaction of the solid medium. The S-wave is often called
a shear wave since the physical deformation is a back and forth shearing of the solid medium,
which explains why the shear wave velocity is directly dependent on the shear rigidity of the solid
medium. Note that gasses, liquids and soft tissues don’t support the propagation of shear waves,
something that we can take as a fundamental distinction between elastic solids and fluids.

Exercise 2.5 Go back and fill in the algebra that I skipped in this section.

You may be surprised to know that before James Clerk Maxwell8 unified the fields of electricity
and magnetism, it was Navier’s equation that was used to model the propagation of light waves.

6 Claude-Louis Navier was a French engineer who formulated the general theory of elasticity in a mathematically
usable form (1821). His major contribution, however, remains the Navier-Stokes equations (1822), central to fluid
mechanics. His is another of the 72 names inscribed on the Eiffel Tower. https://en.wikipedia.org/wiki/Claude-
Louis_Navier.
7 Rudolf Friedrich Alfred Clebsch was a German mathematician who made important contributions to scattering
theory, including the Clebsch-Gordan coefficients for spherical harmonics, which are now widely used in quantum
mechanics. https://en.wikipedia.org/wiki/Alfred_Clebsch.
8 James Clerk Maxwell was a Scottish scientist whose most notable achievement was to formulate the classical
theory of electromagnetic radiation, bringing together for the first time electricity, magnetism, and light as different
manifestations of the same phenomenon, leading to the prediction of radio waves. https://en.wikipedia.org/wiki/
James_Clerk_Maxwell.

https://en.wikipedia.org/wiki/Claude-Louis_Navier
https://en.wikipedia.org/wiki/Claude-Louis_Navier
https://en.wikipedia.org/wiki/Alfred_Clebsch
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
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(a)

(b)

Figure 2.8 Shear waves and longitudinal waves are propagating to the right. Note in the shear waves
(a) the displacement is up and down and that the rectangular elements are sheared into parallelograms.
Note in the longitudinal waves (b), the rectangular elements remain rectangular, but they are alternately
compressed and elongated. Shear waves distort the solid without a change in density whereas longitudinal
waves represent a change in density.

The elastic medium that supported the propagation of light waves was called the aether, and it
had some rather unusual properties. The obvious one is that we can pass through the aether freely
without noticing it. It got worse when measurements demonstrated conclusively that light is a
transverse wave with a known speed of propagation, since then, the ratio of the rigidity and density
are specified by c2

T = 𝜇∕𝜌 but of course the aether can’t be too dense or rigid because then we’d be
able to notice it. That’s bad enough, but somehow we have to get rid of the longitudinal waves. The
simplest way is to make the aether incompressible by setting 𝜆→ ∞, which gives us the Greenian
aether.9 That works, but now it’s an incompressible medium that we are able to move through
freely. The alternative is to assume that the reason there are no longitudinal waves is because their
velocity is zero, which is what we’d have if 𝜆 = −2𝜇. The liable aether never seemed to quite catch
on, somehow.

Let’s consider Navier’s equation again

𝜌𝜕
2
t u⃗ − 𝜇∇2 − (𝜆 + 𝜇)∇(∇ ⋅ u⃗) = 0 (2.43)

We said before that the thing that distinguishes a fluid from a solid is that a fluid cannot support
shear deformation, that is, it has vanishing shear rigidity. Letting 𝜇 → 0 in Navier’s equation gives

𝜌𝜕
2
t u⃗ − 𝜆∇(∇ ⋅ u⃗) = 0 (2.44)

but my favorite vector identity is

∇ × ∇ × (⋅) = ∇(∇ ⋅ (⋅)) − ∇2(⋅)

For fields with no curl, we can then write 𝜌𝜕2
t u⃗ − 𝜆∇2u⃗ = 0 or, integrating to get 𝜌𝜕2

t 𝜙 − 𝜆∇2
𝜙 = 0

and then if we suppress the harmonic time convention this can be rearranged to give(
∇2 + 𝜔

2
𝜌

𝜆

)
𝜙 = 0 (2.45)

Clearly we can think of acoustic waves in fluids as a subset of elastic waves (longitudinal waves) in
solids.

9 See, Whittaker, E.T. (1910). A History of the Theories of Aether and Electricity from the Age of Descartes to the Close
of the Nineteenth Century. Longmans, Green, and Company, which you should be able to find available for download.
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Exercise 2.6 What is 𝜆 for several liquids and gasses, and how do those values compare to various
solids?

2.6 Electromagnetic Waves

Let’s next consider electromagnetics using Maxwell’s equations so that we can compare and con-
trast what we get for acoustics and elastodynamics. It may or may not be surprising to you that
we’ll keep coming back to the same basic wave equations over and over. We seem to be modeling
quite different physics, but then waves are waves and scattering is scattering. I won’t go so far as
some radar-scattering types who think of acoustics as merely a “scalar” version of electromagnet-
ics, but both physical intuition and mathematical techniques developed in various aspects of wave
propagation and scattering are pretty broadly applicable.

Maxwell’s equations can be written as:

∇ ⋅ D⃗ = 𝜌 ∇ ⋅ B⃗ = 0 (2.46)

∇ × E⃗ = −𝜕tB⃗ (2.47)

∇ × H⃗ = 𝜕tD⃗ + J⃗ (2.48)

which are the laws of Gauss, Faraday, and Ampere. In these four equations, E⃗ is the electric field,
B⃗ is the magnetic flux density, D⃗ is the electric field displacement, and H⃗ is the magnetic field. In
addition, 𝜌 and J⃗ are the (electric) charge density and current density.

Constitutive relations are

B⃗ = 𝜇H⃗ D⃗ = 𝜖E⃗ J⃗ = 𝜎E⃗ (2.49)

where 𝜖, 𝜇 are the permittivity and permeability and 𝜎 is the conductivity. With these constitutive
equations, Maxwell gives

∇ ⋅ (𝜖E⃗) = 𝜌 ∇ ⋅ (𝜇H⃗) = 0 (2.50)

∇ × E⃗ = −𝜕t(𝜇H⃗) (2.51)

∇ × H⃗ = 𝜕t(𝜖E⃗) + 𝜎E⃗ (2.52)

Taking the curl of the last two and again using my favorite vector identity

∇ × (∇ × (⋅)) = ∇(∇ ⋅ (⋅)) − ∇2(⋅)

we can write, with 𝜌 ≡ 0, wave equations

∇2E⃗ − 𝜇𝜖𝜕2
t E⃗ − 𝜇𝜕t(𝜎E⃗) = 0 (2.53)

∇2H⃗ − 𝜇𝜖𝜕2
t H⃗ − 𝜇𝜕t(𝜎H⃗) = 0 (2.54)

Assuming harmonic time dependence e−i𝜔t gives

(∇2 + k2)E⃗ = 0 (∇2 + k2)H⃗ = 0 (2.55)

where k2 = 𝜔
2
𝜇𝜖[1 + i𝜎∕𝜔𝜖]. In the absence of conductivity, the wave number is real k = 𝜔

√
𝜖𝜇

and the wave velocity is 1∕
√
𝜇𝜖.
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For scattering, it is often convenient to define relative permittivity and permeability as 𝜖r = 𝜖∕𝜖0
and 𝜇r = 𝜇∕𝜇0, where 𝜖0 and 𝜇0 are the free space values and the speed of light in a vacuum is

c = 1√
𝜇0𝜖0

= 3 × 108 m∕s

I happen to like using the relative permittivity and permeability rather a lot because I find the
absolute units to be nonintuitive. It also makes it easy to guess the material properties for common
materials since many dielectrics have a relative permittivity of about 3 and nonmagnetic materials
have a permeability of 1.

Exercise 2.7 How good are the guesses 𝜖r ≈ 3 and 𝜇r ≈ 1 for various materials? How much do
permeability and permittivity depend on frequency and temperature and can you think of some
situations where it would be important to consider such variations in our modeling?

Note that the inclusion of conductivity made the wave number complex, which means that there
will be attenuation. Rather a lot actually, although that isn’t really obvious from the way we’ve
defined the wave number. If we write it as:

k = 𝜔

√
𝜖𝜇

[
1 + i 𝜎

𝜔𝜖

] 1
2 (2.56)

it’s perhaps a bit more obvious that something odd will happen unless 𝜎∕𝜔𝜖 is small compared to
unity. Take a minute and look up some values of conductivity for a few metals and check whether
𝜎∕𝜔𝜖 is small compared to unity. Don’t forget that 𝜔 = 2𝜋f and consider frequencies appropriate
to a few different applications like radar, WiFi, cell phones, radio, etc.

Another way to introduce attenuation is to simply make the permeability and/or the permittivity
complex, 𝜖 = 𝜖

′ + i𝜖′′ and 𝜇 = 𝜇
′ + i𝜇′′, which obviously makes the wave number complex even

without explicitly including conductivity. Each material is then simply characterized by its com-
plex 𝜇 and 𝜖, which means there are four parameters that need to be measured for each frequency
band of interest. For the sorts of meta-materials favored by stealth aircraft designers, for example,
there will often be strong frequency dependence and so if the other side migrates to radars that are
outside of the nominal “threat band,” there is always the fear that invisible airplanes will suddenly
light up like a Christmas tree. It also means that the optimal placement of cell phone towers (so
painstakingly modeled and then argued for at city council) might not give good coverage for the
next generation of smart(er) phones. And please don’t show up at city council meetings to argue
that 5G caused COVID-19.

The Milstar satellite communications system was under development at Hanscom, AFB when I
was there in the late 1980s.10 When it came time to design the radome(s) that cover the antenna(s)
that aircraft use to communicate with the satellite, the higher (EHF) frequency band used by
Milstar meant that nobody was quite sure what the complex 𝜇 and 𝜖 values were for typical radome
materials. Initially, they asked us to go check the library to see if anybody knew the answer, but
they had never been measured, so a contract was issued to hurry up and go measure them. A
recurring theme when we talk about scattering phenomena is that changing the frequency just a
bit can dramatically alter the scattering behavior.

10 https://www.spaceforce.mil/About-Us/Fact-Sheets/Article/2197755/milstar-satellite-communications-system/.

https://www.spaceforce.mil/About-Us/Fact-Sheets/Article/2197755/milstar-satellite-communications-system/
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2.7 Acoustic Waves

Now let’s derive the acoustic wave equation as it’s normally done for liquids and gasses. The basic
equations for fluid mechanics are the Navier–Stokes equations, not to be confused with Navier’s
equation despite the obvious confusion often caused by the too-similar names. It’s probably best if
we just use descriptive names for them. Conservation of mass and momentum are written

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌𝑣) = 0 (2.57)

𝜌

D𝑣
Dt

= −∇p (2.58)

where the convective derivative is defined as:
D
Dt

≡
𝜕

𝜕t
+ 𝑣 ⋅ ∇

In these 𝜌 is the density, 𝑣 is velocity, and p is pressure. Pressure and density are related by an
equation of state ∇p = c2∇𝜌, where c is the speed of sound. Note that we could have included vis-
cous and thermal effects, but that would have made things very complicated.

Sound waves are small fluctuations in a fluid otherwise at rest, so we linearize all of the field
variables

𝜌 = 𝜌0 + 𝜌′ p = p0 + p′
𝑣 = 𝑣0 + ⃗

𝑣
′

with 𝜌0 and p0 constants and 𝑣0 ≡ 0 because there’s no mean flow. Now plug in and rearrange terms

(mass)
𝜕𝜌0

𝜕t
⏟⏟⏟

zero

+ 𝜕𝜌
′

𝜕t
+ ∇ ⋅

[
(𝜌0 + 𝜌′) ⃗𝑣′

]
= 0 (2.59)

(momentum) (𝜌0 + 𝜌′)
(
𝜕

𝜕t
+ 𝑣 ⋅ ∇

)
⃗
𝑣
′ = − ∇(p0

⏟⏟⏟

zero

+ p′) (2.60)

(state) ∇p′ = c2∇𝜌′ (2.61)

Rearrange these one more time and neglect terms which are second order in small quantities to get
the linearized equations

𝜕𝜌
′

𝜕t
+ 𝜌0∇ ⋅ ⃗𝑣′ = 0 (2.61)

𝜌0
𝜕
⃗
𝑣
′

𝜕t
= −∇p′ (2.62)

p′ = c2
𝜌
′ ⇒

𝜕𝜌
′

𝜕t
= 1

c2
𝜕p′

𝜕t
(2.63)

Do the following algebra: plug the linearized equation of state into the linearized conservation
of mass equation and then take the time derivative of the result. Then take the gradient of the
linearized momentum equation and solve for an equation in p′. We then write, dropping the primes,
a linear wave equation for pressure

∇2p − 1
c2 𝜕

2
t p = 0 (2.64)
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or, in frequency domain(
∇2 + 𝜔

2

c2

)
p = 0 (2.65)

We could also take the curl of the linearized momentum equation to write

𝜌0
𝜕

𝜕t
∇ × 𝑣 = 0 ⇒ 𝑣 = ∇𝜙 (2.66)

Then the linearized mass and momentum equations give

1
c2
𝜕p
𝜕t

+ ∇2
𝜙 = 0 (2.67)

𝜌0
𝜕

𝜕t
∇𝜙 = −∇p ⇒

𝜕p
𝜕t

= −𝜌0
𝜕

2
𝜙

𝜕t2 (2.68)

Combining these two gives

∇2
𝜙 − 1

c2 𝜕
2
t 𝜙 = 0 (2.69)

or, in frequency domain(
∇2 + 𝜔

2

c2

)
𝜙 = 0 (2.70)

If we write k = 𝜔∕c we then have(
∇2 + k2)

𝜙 = 0 or
(
∇2 + k2) p = 0 (2.71)

which are exactly the same scalar wave equations that we had for elastic waves.
Consider the one-dimensional case where the scalar wave equation is(

𝜕
2

𝜕x2 + k2
)
𝜙(x) = 0 (2.72)

and has the general solution 𝜙(x) = Aeikx + Be−ikx, which we interpret as plane waves traveling to
the right and left, with amplitudes A and B, respectively. The scalar wave equation is so important
in so many different areas, that its solutions have been studied extensively in various coordinate
systems.

Exercise 2.8 Derive via separation of variables the general solutions of the scalar wave equation
in Cartesian, spherical and cylindrical coordinates. What are the special functions that would show
up if we did this in spheroidal and elliptic cylindrical coordinates?

2.8 Anisotropic Elastic Solids

Recall our field equations

𝜌𝜕
2
t ui − 𝜕j𝜎ij = 0 𝜖ij =

1
2
(
𝜕jui + 𝜕iuj

)
with Hooke’s Law 𝜎ij = Cijkl𝜖kl from which we can derive Navier’s equation if the medium is
isotropic and homogeneous. This is an excellent approximation in many cases, but then there
are many materials where the stiffness, rigidity, etc. are directional and that must be accounted
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for. Wood is the obvious example, since the properties along vs. across the grain can be quite
different. Bone is also pretty strongly anisotropic, although we’re not used to thinking of bones as
having “grain.” Of course, most layered materials are quite likely to have very different properties
in the plane of the laminations as compared to through the thickness of the laminate. Seismologists
have long had to contend with “ray bending” due to the stratified nature of the earth’s crust, but
for decades now, engineered metals like steel and aluminum have been so dominant that elastic
wave propagation in solids hasn’t usually had to deal with waves wanting to travel at different
speeds in different directions. Similarly, most electromagnetic wave theory, underwater sound,
acoustics, and medical imaging only rarely encounter anisotropy. That’s a good thing, since as
we’re about to see, things are going to get complicated very quickly and even after mastering a
new, rather clumsy notation and trying to solve rather simple scattering problems, we’ll end up
frustrated.11

My first set of golf clubs had steel shafts, and then either metal or wood clubheads depending on
whether they were irons or woods. They were modern in the sense that they didn’t have wooden
shafts, but not anywhere near as sophisticated as a set I got as a teenager, which had clubheads
that were metal for the driver and the fairway woods. I still have steel shafts for my current irons,
but my titanium-head woods all have composite shafts made from graphite fibers consolidated in
an epoxy matrix. Composites like graphite-epoxy have many advantages over metals. They can be
stiffer and lighter and their stiffness can be tailored by arranging the graphite fibers in order to give
stiffness primarily in the directions needed to carry the expected loads without wasting it in other
directions. This is presumably the whole point of the grain in a tree, but in engineering composites,
the differences in properties along vs. against the fiber direction can be much higher. The fibers
are sometimes woven into fabrics or pre-preg tape to ease in manufacturing, and very often many
layers are used to build up a part’s full thickness with fiber direction of each laminæ alternating in
a particular fashion to build up a laminate with chosen effective properties.

We account for material anisotropy in the constitutive relations. Because the stress and strain
tensors are symmetric, and thus have only six independent components each, there are only 21
independent constants in Cijkl instead of 34. Of course, Cijkl is still a fourth-rank tensor, so if you
think about it, it’s a rather unhelpful way to keep track of the material constants. This is especially
true if you want to try to understand how the different kinds of anisotropy we’re about to encounter
relate to each other. I’m not a particularly big fan of the notation we’re about to use since I happen
to like Cartesian tensor notation quite a lot. You’ll probably hate it too.

First, let’s forget about the fact that stress and strain are tensors, but let’s use the fact that they
are symmetric tensors with six components each. We’ll then just write stress and strain as column
vectors, and while we’re at it will be extremely careless with a factor of two in shear strain. Then
we’ll use an “index” notation that isn’t an index notation and not really do the whole Einstein
summation convention thing. So that everything will be crystal clear and we’ll never get mixed up
between the elegant tensor notation and the new contracted notation, we’ll simply use little letters

11 There’s a lot to be said about wave propagation in anisotropic media. B.A. Auld has a two-volume book “Acoustic
Fields and Waves in Solids” Krieger Publishing (1990), which is an excellent reference. The punchline isn’t very
funny, though. Slog your way through both volumes and you’ll find that including anisotropy makes things so
complicated that you can’t really do much with the equations. My rule is to never make things more complicated
than you have to, modeling wise, because the problems we’re trying to solve are hard enough.
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for indices in the tensor notation and capital letters for them in the contracted notation. I told you
you’d hate it. Here’s a table that makes it about as clear as it’s going to get.

Stress Contracted Strain Contracted
𝜎11 𝜎1 𝜖11 𝜖1
𝜎22 𝜎2 𝜖22 𝜖2
𝜎33 𝜎3 𝜖33 𝜖3

𝜏23 = 𝜎23 𝜎4 𝛾23 = 2𝜖23 𝜖4
𝜏31 = 𝜎31 𝜎5 𝛾31 = 2𝜖31 𝜖5
𝜏12 = 𝜎12 𝜎6 𝛾12 = 2𝜖12 𝜖6

with 𝛾 used for the engineering shear strain but 𝜖 used for the tensor shear strain. The factor of
two floating around is because we had originally defined shear strain to be a proper tensor but the
commonly used engineering version didn’t. Then we can write

𝜎I = CIJ𝜖J (I, J = 1, 2, 3,… , 6) (2.73)

and CIJ will be a 6 × 6 matrix. Writing it all out gives⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.74)

This is sometimes called triclinic by crystals people. There are 21 constants in CIJ because it is a
symmetric matrix. So far, we haven’t really gained anything, but most situations that we’re likely to
deal with are going to have some symmetries, which will mean that we won’t need quite so many
of the stiffnesses. If there is one plane of symmetry, only 13 of the CIJ ’s are independent. If there
are two orthogonal planes of material symmetry, then there will always exist a third and there are
then only nine CIJ ’s.

Generally speaking composites people won’t ever use any of the more complicated stiffness
matrices for the simple reason that the CIJ ’s each have to be measured. Remember that they
are just numbers for any given material that relate stress to strain. That means to measure the
nine CIJ ’s, one has to do nine independent measurements, which are carefully aligned with
the natural directions of the material. Those measurements are typically done on representative
coupon samples in specially designed fixtures, but of course, if you want to understand the
material and/or manufacturing variations you’ll have to do enough measurements to understand
the relevant statistics. Then, anytime you change something about your materials and/or your
manufacturing processes you’ll have to do another set of measurements. I suppose it wouldn’t be
so bad if the measurements were quick and/or interesting, but they’re time consuming and not
particularly exciting. The fun part about putting things in a hydraulic load frame is when they fail
catastrophically, for example, a full-size composite airliner wing in a million-pound load frame,
but what we’re talking about here are just the simple stiffnesses, so nothing usually fails violently
and embeds shards of itself in the wall clear across the hangar. Hence, composites folks pretty
much always assume that their materials are orthotropic, unless there is some relevant simplifi-
cation. Often it’s an excellent approximation. Wood, for example, can often be considered to be
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orthotropic, with the three natural directions being defined as along the grain, and then radially
and circumferentially across the grain. An orthotropic material that has the same stiffnesses in
the three perpendicular directions is called cubic, but isn’t isotropic because going diagonally will
be different and the amount of the difference will depend on the angle of the diagonal.

If at a point in the material, there is one plane in which the mechanical properties are the same
in all directions, then the material is called transversely isotropic. Wood can often be described
this way, as can unidirectional composites where the fiber reinforcements are all aligned in the
same direction. The stress–strain relationship then has only five independent constants. Finally,
for isotropic materials, we have only two independent CIJ ’s and thus:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 (C11−C12)
2

0 0

0 0 0 0 (C11−C12)
2

0

0 0 0 0 0 (C11−C12)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜖1

𝜖2

𝜖3

𝜖4

𝜖5

𝜖6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Exercise 2.9 How are the other material properties we introduced previously related to C11 and
C12 for isotropic materials? What are cL and cT in terms of CIJ ’s?

Let’s go back and reconsider the field equations. We can write

𝜕iCijkl𝜕kul = 𝜌𝜕
2
t uj (2.75)

which reduces to Navier’s equation if the isotropic Hooke’s tensor is used. Instead, Fourier trans-
form in time and space (𝜕t → −i𝜔, 𝜕i → ikli) to get

(ikli)Cijkl(iklk)ul = −𝜔2
𝜌uj

or k2 (liCijkllk
)

ul = 𝜌𝜔
2uj. We now define the Christoffel matrix as Γjl = liCijkllk and we can write

the dispersion relation in its most general form as:

k2Γijui = 𝜌𝜔
2uj (2.76)

In the reduced notation, we write the Christoffel matrix as Γij = liK CKLlLj where

liK =
⎡⎢⎢⎣

lx 0 0 0 lz ly
0 ly 0 lz 0 lx
0 0 lz ly lx 0

⎤⎥⎥⎦ lLj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

lx 0 0
0 ly 0
0 0 lz
0 lz ly
lz 0 lx
ly lx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Note that I, J,K,L go over the range 1–6 while i, j, k, l just go over 1–3 and lx = kx∕k, ly = ky∕k,
lz = kz∕k are the direction cosines of the propagation direction. Told you you’d hate this notation.

In the most general anisotropic material with 21 independent CIJ ’s, the Christoffel equation is

k2
⎡⎢⎢⎣
𝛼 𝛿 𝜖

𝛿 𝛽 𝜁

𝜖 𝜁 𝛾

⎤⎥⎥⎦
⎧⎪⎨⎪⎩

ux
uy
uz

⎫⎪⎬⎪⎭ = 𝜌𝜔
2

⎧⎪⎨⎪⎩
ux
uy
uz

⎫⎪⎬⎪⎭ (2.77)
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kz/ω kz/ω

kx/ω kt/ω

(a) (b)

Figure 2.9 Slowness curves for cubic anisotropy. Faster modes have smaller slowness, so the dotted curves
in each are the quasi-longitudinal waves. The solid circle on (a) is the pure shear mode whose slowness
does not depend on direction for this particular orientation. (b) is propagation in a cubic diagonal plane.

𝛼 = C11l2
x + C66l2

y + C55l2
z + 2C56lylz + 2C15lzlx + 2C16lxly

𝛽 = C66l2
x + C22l2

y + C44l2
z + 2C24lylz + 2C46lzlx + 2C26lxly

𝛾 = C55l2
x + C44l2

y + C33l2
z + 2C34lylz + 2C35lzlx + 2C45lxly

𝛿 = C16l2
x + C26l2

y + C45l2
z + (C46 + C25)lylz + (C14 + C56)lzlx + (C12 + C66)lxly

𝜖 = C15l2
x + C46l2

y + C35l2
z + (C45 + C36)lylz + (C13 + C55)lzlx + (C14 + C56)lxly

𝜁 = C56l2
x + C24l2

y + C34l2
z + (C44 + C23)lylz + (C36 + C45)lzlx + (C25 + C46)lxly

Now rewrite the Christoffel equation as
(

k2Γij − 𝜌𝜔2
𝛿ij
)

uj = 0. A dispersion relation is then found
by setting the characteristic determinant equal to zero. At fixed 𝜔, this defines a surface that gives
k as a function of its direction, ̂l called a wave vector surface. We write|||| k2

𝜔
2 Γij(lx, ly, lz) − 𝜌𝛿ij

|||| = 0 (2.78)

and note that k∕𝜔 = 1∕𝑣phase is the inverse of the phase velocity, which is typically called the slow-
ness. A slowness surface shows us graphically how the propagation depends on direction. For an
isotropic material, the waves propagate the same in all directions and we get circles. Examples for
cubic anisotropy are shown in Figure 2.9.

Exercise 2.10 Use the parametric plotting capability of your favorite symbolic manipulation soft-
ware to reproduce the slowness curves for GaAs.

2.9 Summary

I do hope you noticed that for all the different kinds of waves, we sooner or later ended up with the
Helmholtz equation. That shouldn’t have been surprising to you. The most-happy-excellent news
is thus that we really only have one equation to deal with. One very important way that the different
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kinds of waves are different, though, is the boundary conditions that must be satisfied when waves
interact with a discontinuity. Chapter 3 is going to discuss boundary conditions because the whole
point of scattering analysis is to model the interaction of waves with discontinuities. I promise we’ll
get to some actual scattering after that, though.

Part of what I had in mind with this chapter was giving you a sense of the level of mathematical
acrobatics that’s going to follow. I thought that would be better than springing things on you as
the book went along. There will be some special functions and whatnot in the chapters that follow,
but if you’re reasonably comfortable with the maths in this chapter, you’re good to go. You may
have expected there to be an extensive references for this chapter. Nope. There are innumerable
sources for this mathematics. Assuming you’re a digital native, you’re probably used to looking
things up on line, which is why I was trolling you by including so many biographical snippets of
mathematicians from Wikipedia. I’ll make a point of pointing you toward classic reference books
for the highly esoteric math we’ll be using, but for the basic (but still pretty advanced) stuff in this
chapter, I want you to gather for yourself the reference materials you find useful, whether those
are hyperlinks to on-line resources or pdfs that you save locally or old-fashioned actual books that
you keep handy on a bookshelf. You do you.

Regarding that extensive references you may have been expecting me to include, I thought about
doing that here, but my worry is that some readers would feel the need to go read/master all those
books, papers, etc. before continuing on. That’s the opposite of what I want you to do. There are
innumerable books on elastodynamics, acoustics, and electromagnetics, of course, so my advice
is to begin accumulating your own personal library. Many of the classic texts and monographs
continue to be reprinted or are available online. For example, I have two copies of Stratton’s
“Electromagnetic Theory” that I like quite a lot. One I bought when I was a graduate student
and one I got from my advisor when he died. I also just downloaded a PDF version from Internet
Archive, but I see that it’s available in a few different forms for quite modest prices at Amazon and
such. Another bit of advice I’ll offer up at this point is to take advantage of used bookstores, library
sales, etc. where you can pick up for next to nothing classic books on the sorts of esoteric technical
subjects we’re talking about here. You may get some pushback from your significant other about
it, but there will be times in your professional life, where having the right reference materials at
hand will be the difference between getting past a roadblock and continuing to be stuck. My wife
and I had an agreement back in the day; I wouldn’t ask her how much money she was spending
on clothes and she wouldn’t ask me how much money I was spending on books. I still have quite a
lot of books in my home office, campus office, and lab, as well as a small sliver of a shared walk-in
closet for my clothes. Classic books never seem to go out of style. Classic clothes that you can wear
for more than one season are an investment.

There’s no excuse these days for not doing a proper literature review, except for perhaps the
excuse that not including references for this chapter is intended to nudge you to getting started
on accumulating your own reference library. In some ways, it used to be simpler. First get access to
a good library and then go there to see what reference materials the professionals had curated on
your behalf. I have fond memories of going to various libraries back in the day as I tracked down
the relevant literature for some problem I was working on. I used to be quite good at photocopy-
ing. I still have my Boston Library Consortium ID card, even though it expired on 19 September
1993. These days even NASA is worried: “The current state of knowledge discovery includes use
of available internet-based search tools and interlibrary loan processes to aid literature review and
discovery of potential partners/collaborators. However, budget reductions have led to a decrease in
access to knowledge portals (e.g. journal portals and database platforms). Hence, continued access
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to knowledge sources is an area of concern.” That quote is from a report12 coauthored by one of
my former PhD students, Dr. Cara Leckey, who just spent 18 months as the NASA LaRC Center
Transformation Portfolio Manager but is now back to her day job as Nondestructive Evaluation
Sciences Branch Head.

In the olden days when you used to have to physically go to the library, there would be a whole
wall of books called Science Citation Index where you could look up the listing for a paper and
it would list what other papers had cited it. It was updated each year, of course. Aside from the
vanity associated with who cited whom, the main utility was seeing who else was citing classic
papers in your field these days so that you could look up their papers and see what they were
working on and whether that was relevant to what you were working on. When you’re writing a
proposal to get funding for your clever new idea, you have to make sure that your clever idea is new.
That requires scouring the literature to see who has already done what and who else is now doing
similar things. These days it’s a simple matter of clicking on a few buttons in Google Scholar, but
don’t neglect the important task of systematically exploring the literature so you can stand on the
shoulders of the giants who have come before you. Don’t forget to keep publishing, even if you’re a
tenured full professor. The same goes for NASA Branch Heads, which reminds me that you might
like Dr. Leckey’s recent book.13

I do want to make the point that it’s not just the number of publications that matters, it’s whether
the things you publish matter. A simple measure of that is h-index, where h is the number of your
publications that have been cited h or more times. The free software I use to calculate h-index is
named Publish or Perish. That reminds me of a cartoon I’ve had on my bulletin board for decades.
The caption reads, “Surely you were aware when you accepted the position, Professor, that it was
publish or perish.” Google that caption and you’ll find the cartoon, which is all over the internet, or
don’t because we can all agree that school shootings are bad. In the cartoon, the Professor is getting
up from his desk as the hitman standing next to the Dean is screwing the silencer to his pistol.

Journals can also be assigned an impact factor so that you can argue that the places you publish
are way better than where your frenemies publish. Your Provost can have one of her many Associate
Provosts keep track of the number of publications in high-impact journals that affect US News
rankings, which reminds me of “Adam Ruins Everything - Why College Rankings Are A Crock”
which you can find on YouTube.14

12 https://ntrs.nasa.gov/citations/20230007724.
13 Banerjee, S. and Leckey, C.A.C. (2020) Computational Nondestructive Evaluation Handbook: Ultrasound
Modeling Techniques. CRC Press. https://books.google.com/books?id=ElzsDwAAQBAJ.
14 https://youtu.be/2unU4vCume0.

https://ntrs.nasa.gov/citations/20230007724
https://books.google.com/%3Cp%3Ebooks?%3Cp%3Eid%3Cp%3E=ElzsDwAAQBAJ
https://youtu.be/2unU4vCume0
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3

Boundary Conditions: Continuous and Discretized

The good news is that electromagnetic and acoustic and elastic waves all obey about the same
wave equation, or at least we can manipulate the various field equations so that when push comes
to shove the equation that we’re left with each time is Dr. Helmholtz’s. That means we don’t have
to invent the solutions, we just have to learn to properly use the solutions developed, over the last
couple dozen decades or so, to the Helmholtz equation. I was surprised to learn that Helmholtz
actually was a real doctor, that is, a professor of anatomy and physiology because that’s what his
parents made him choose for his major. After two decades of doing physics on the side, he finally
switched departments.1

The bad news is that the boundary conditions are different for electromagnetic [1–6] acoustic
[7–14] and elastic [15–26] waves. It’s not so bad, though. We simply have to treat these three fami-
lies of waves using proper boundary conditions, which I promise will make intuitive sense to you,
eventually.

3.1 Boundary Conditions for E&M

Consider a boundary between two media, which we’ll cleverly name Medium 1 and Medium 2.
They could be any two materials and the boundary could have any shape, but we’ll assume that the
boundary is locally sort of flat in order to be able to define a unit normal there, n̂. The boundary
conditions are then

n̂ ⋅ (B⃗2 − B⃗1) = 0 (3.1)

n̂ × (E⃗2 − E⃗1) = 0 (3.2)

n̂ × (H⃗2 − H⃗1) = K⃗ (3.3)

n̂ ⋅ (D⃗2 − D⃗1) = 𝜔 (3.4)

1 Hermann Ludwig Ferdinand von Helmholtz was a German physician and physicist who made significant
contributions in several scientific fields. In physiology and psychology, he is known for his mathematics of the eye,
theories of vision, ideas on the visual perception of space, color vision research, and on the sensation of tone,
perception of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the
conservation of energy, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of
thermodynamics. As a philosopher, he is known for his philosophy of science, ideas on the relation between the
laws of perception and the laws of nature, the science of aesthetics, and ideas on the civilizing power of science.
https://en.wikipedia.org/wiki/Hermann_von_Helmholtz.

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.

https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
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n1

n2

Δl
Δa

Boundary surface

Medium 1

Medium 2

Figure 3.1 Pillbox that straddles the boundary between Mediums 1 and 2 with surface normals n̂1 and n̂2.
The thickness of the pillbox is Δl and the area of the top and bottom surfaces is Δa. Please note that these
two media could be any combinations of solids, liquids, and/or gasses.

where K⃗, 𝜔 are surface current and charge densities. Note that normal magnetic flux and tangen-
tial electric fields are continuous, while the normal electric displacement and tangential magnetic
fields are discontinuous.

To derive the first boundary condition relations, consider the pillbox shown in Figure 3.1. The
infinitesimal pillbox spans the boundary between the two media, so that the top surface is just a
bit on one side of the boundary and the bottom surface is just a bit on the other side. Now recall
that ∇ ⋅ B⃗ = 0 holds for any point(s) and thus integrating ∇ ⋅ B⃗ over the entire volume of the pillbox
still gives hard zero because a volume integration is really nothing more than a summing up of the
contributions of all the points in the volume, each of which is zero. Of course, a volume integral
isn’t all that helpful in writing boundary conditions, so we use the divergence theorem to convert
the volume integral to a surface integral, which gives

∮
B⃗ ⋅ n̂da = 0 (3.5)

and this is approximately equal to(
B⃗ ⋅ n̂1 − B⃗ ⋅ n̂2

)
Δa + Contribution from the sides = 0 (3.6)

Now shrink the already tiny pillbox and note that as it gets smaller and smaller the contribution
from the sides will tend to zero both because the pillbox is getting really thin and because they will
cancel themselves out as the pillbox shrinks down to the limit of a mathematical point. Please don’t
get hung up on atoms vs. no atoms. Take some Shrinx and just breathe. We then get(

B⃗1 − B⃗2

)
⋅ n̂ = 0 (3.7)

Exercise 3.1 Go through the derivations for the other three boundary conditions. If you don’t feel
like doing that, look them up in some of the E&M books you’ve begun to collect for your personal
library. I like Stratton.

That was pretty simple, assuming you’re comfortable with the divergence theorem and the limit-
ing process. The electromagnetics boundary conditions are also pretty simple to remember because
the usual situation is simply that the tangential components of E⃗ and H⃗ are continuous across any
boundary.

3.2 Boundary Conditions for Acoustics

Next we consider the boundary conditions for acoustics, where we have two different fluids called
fluids 1 and 2, but we’re still going to refer to Figure 3.1. This could be a boundary between air and
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water or between two liquids or whatever. It could even be a “boundary” inside of a large body of
fluid where the temperature or salinity or some other property changes abruptly enough to look
like a sharp discontinuity to an acoustic wave.

Be forewarned that some aspects of the boundary conditions for acoustics2 won’t make sense
to you unless you have a background in fluid mechanics and especially aerodynamics. The issue
has to do with viscosity and, as I may have mentioned, introducing viscosity makes things really
complicated in a hurry. One of our most important rules is going to be to never make the model
any more complicated than needed in order to capture the physics of interest because we’ll often
run the risk of formulating problems that are intractable. In much of aerodynamics, it isn’t nec-
essary to include things like compressibility and viscosity of the air. That’s not to say that air is
incompressible (because then sound waves wouldn’t exist) and air is certainly viscous. For sub-
sonic aerodynamics, it is very often the case that compressibility doesn’t need to be included until
the flow gets near Mach 1, which we call the transonic regime. Viscosity usually only has to be
included in the so-called boundary layer right next to the surface of the airplane, and the rest of the
flow field around an airplane behaves as if it isn’t affected by viscosity at all. Ludwig Prandtl, the
inventor of boundary layer theory, may have been a stereotypical absent-minded scientist, but he
came up with viscous flow theory in order to help explain how a vacuum cleaner picks up a straw
so that a better vacuum cleaner could be designed. The “drag” on a straw being sucked into a vac-
uum cleaner is mathematically the same problem as the “drag” on an airplane flying through the
air. Also, we’re not talking about the kind of plastic drinking straw that got stuck up a sea turtle’s
nose and caused plastic straws to be banned in Chicago so now you have to use paper straws, which
sucks.

OK, so here’s the part that makes sense about the boundary conditions for acoustics. Even though
sound waves are vibrations, fluctuations, or whatever, we’re going to insist that the two fluids not
separate. That should make good sense to you because if they did separate that would create an
empty volume between them (of zero pressure) and the pressure in the surrounding fluids would
cause the fluid to flow back in to fill that void. Keep in mind that we’re talking sound waves here,
which are pretty mild in the scheme of things. Maybe if we were concerned about what was hap-
pening right at the lightning bolt that generates the clap of thunder, we’d have to deal with such
situations, but probably not. Even sonic booms are simply large changes in density and the air
doesn’t actually come apart and clap back together. Now back to a pillbox (Figure 3.1) as we did for
electromagnetics. Start by shrinking it down to a mathematical point so that we can talk about the
fluid motion on either side of the boundary and since the two fluids don’t separate, the motion on
one side of the boundary has to match the motion on the other side. I hope you’re with me so far
because here’s the part that won’t make sense. We’re going to only enforce the boundary condition
on the normal component of the fluid velocity:

n̂ ⋅ 𝑣1 = n̂ ⋅ 𝑣2 (3.8)

2 Allan D. Pierce is known for a large variety of fundamental research on the mechanics of waves, acoustics, and
structural vibrations. His work encompasses atmospheric acoustics, nuclear test detection, sonic booms, interaction
of sound with structures, waves on fluid immersed shells, diffraction and scattering of sound, the mechanics of
marine sediments, and noise control. You should get yourself a copy of his landmark book, “Acoustics: An
Introduction to its Physical Principles and Applications,” which is widely considered the definitive graduate-level
acoustics textbook. Before coming to Boston University in 1993 to take the position as Department Chair, where I
had been since I was a frosh in 1982, Dr. Pierce held the Leonhard Chair in Engineering at Penn State, and prior to
that he was Regents Professor at Georgia Tech. After graduate work in physics at MIT in quantum mechanics, Dr.
Pierce went to work for the RAND Corporation where he began working in acoustics.
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We aren’t going to say anything about the tangential components of the velocities. As far as we’re
concerned, they can do whatever they like. They can even be discontinuous if they really want to. It’s
because we haven’t included viscosity that the two fluids can slide tangentially across each other.
With viscosity, they would stick and all three components of the velocity would be continuous.
Adding viscosity is something we’ll do from time to time, but in many acoustics problems, it gives
excellent results to forget about it, so as long as we don’t brainlock on the whole stick-slip tangential
boundary condition, we’ll be fine. Just keep in mind that the normal fluid velocity is continuous at
the interface and forget the other components for now.

The other boundary condition turns out to make good sense, so consider the small pillbox in
Figure 3.1 again. The pillbox surface isn’t a real surface, but consider the pressure in the fluids
outside of the pillbox. The pressure in fluid 1 is designated as p1 and the pressure in fluid 2 is
cleverly called p2. Pressure is a scalar, so there’s no issue with tangential components and such,
but pressure varies spatially, so it’s a scalar field. Unit of pressure is force per unit area so if we
consider that the pressure acts all over the surface of the pillbox we can calculate the net force on
the pillbox as pressure times surface area. Of course, force is a vector, but the pressure acts normal
to the surface so we still don’t have to worry about tangential components.

Now shrink the pillbox as before and since it’s in equilibrium the net force is zero. The forces on
the sides will cancel each other out as the pillbox shrinks and we’ll be left with the equal and oppo-
site forces on the top and bottom surfaces, which approach a mathematical point on the interface
as the limiting process proceeds. The end result is that pressure is continuous across the boundary:
p1 = p2.

Kind of a long story with a simple result that the normal fluid velocity and the pressure are
continuous. Two special cases are worth mentioning, though, because they will come up quite a
lot. First, if we consider a fluid in contact with a solid material then it’s often the case that the
sound wave will just reflect from the wall. Of course, it’s an approximation which may not always
hold, as you know well if you’ve lived in a dorm or apartment with neighbors who crank up the
base on their stereo. Nevertheless, in many cases, the sound doesn’t really penetrate into the solid
and so the boundary condition is just that the normal fluid velocity is zero at the surface. In this
case, there is no condition on the fluid pressure at the boundary and as usual we try to not think
about what the tangential fluid velocity might be doing at the surface. Second, no matter how loud
you scream under water, your friends standing by the pool can’t hear you. The air is so much less
dense than the water that it works just fine to approximate the boundary condition at the interface
as p = 0. Like the wall, this free surface reflects all of the acoustic waves, but it does it in a different
way because the pressure is zero instead of the normal fluid velocity. Indeed, for the free surface
there is no boundary condition on any of the components of the fluid velocity.

It’s often convenient to formulate our acoustic equations in terms of the velocity potential, in
which case the boundary conditions become

𝜌1Φ1 = 𝜌2Φ2 n̂ ⋅ ∇Φ1 = n̂ ⋅ ∇Φ2 (3.9)

This makes it easy to see the difference between the “hard” and “soft” boundary conditions. For
the rigid and/or infinitely dense wall where the acoustic wave doesn’t disturb the solid surface at
all the boundary condition is

n̂ ⋅ 𝑣 = 0 or n̂ ⋅ ∇Φ = 0 (3.10)

which is a Neumann boundary condition. If the surface has zero density, that is, a vacuum, no
acoustic wave can propagate in it because the pressure is zero and we have p = 0 or Φ = 0, which
is a Dirichlet boundary condition.
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Exercise 3.2 Electromagnetic scattering folks like to say that acoustics is just a scalar version of
E&M. Why do they think that? Hint: for most of the Cold War, most of the things that radar was
scattering from were metals like aluminum, and were well approximated as perfect conductors.

3.3 Boundary Conditions for Elastodynamics

Boundary conditions for elastodynamics are more complicated than either acoustics or electrody-
namics. We have both longitudinal and transverse wave fields and the two types are coupled at the
boundary. Moreover, there are a variety of different approximations that we might want to make.
Oh, and stress has more than three components which is why we have to write it as a tensor.

We’ll start with the simplest case where the two elastic media, still cleverly named Mediums 1
and 2 as in Figure 3.1, are in welded contact. That means that they remain in perfect contact and
so all three components of the displacement vector must be continuous across the interface. Think
of them as glued to each other if that makes more sense than welded contact, but no matter what
words you use, it’s pretty straightforward and we don’t have to go through the odd mental process of
ignoring some components of displacements. Also, don’t be alarmed that in acoustics, we track the
velocity field, while in elastodynamics we track the displacements. In frequency domain, they’re
just different by a factor of i𝜔, which will show up on both sides of the boundary condition equations
and so will cancel. In time domain, the velocity field is just the time derivative of displacement field
so it’s not really a problem.

OK, so continuous displacement gives us three boundary conditions, but it turns out we need
three more. No big deal, as always we draw a little pillbox (Figure 3.1) straddling the boundary and
require that it be in equilibrium such that the net force on it is zero. Of course in elastodynamics,
we have stress instead of pressure, but similarly, force is stress times area. Not so similar is that
stress is a tensor instead of a simple scalar field like pressure. When the pillbox shrinks down to a
point the contributions from the sides are going to cancel out as before, so let’s forget about those.
We’re then left with three components of stress acting on the top surface, with corresponding equal
and opposite stress components acting on the bottom surface. One pair will be the normal stress
that happily corresponds to the role of pressure in the acoustic case, so let’s note for the record that
the normal stress gets to be continuous across the interface. The other two pairs are the tangen-
tially oriented shear stress components on the top and bottom surfaces. When the pillbox shrinks
to zero size, those shear stresses are also continuous. That gives three boundary conditions for
stress components, and the name for those three components is normal surface tractions. Now, I
know what you’re thinking. The stress tensor is symmetric, which means that there are really six
independent components instead of a full nine, but we’ve only used three of them in the bound-
ary conditions and so the other three stress components are free to do whatever they want at the
interface. You’re also a little worried that there’s something lurking behind the scenes akin to fluid
viscosity that I’m about to spring on you. Fear not, there isn’t. It’s a good thing, too, because the
tensorial nature of the stress boundary conditions is going to make things pretty complicated. So
complicated, in fact, that reflection and refraction is the particular place where the elastodynamic
theory of the aether collapsed under its own weight in favor of the much better electromagnetic
theory of light.

Exercise 3.3 Write the boundary condition equations for two half-spaces when (i) the boundary
is the xy-plane, (ii) the boundary is the xz-plane, and (iii) the boundary is the yz-plane. Also write
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the boundary condition equations for a cylindrical interface r = a, where the coordinates are (r, 𝜃, z)
as well as a spherical interface r = a, where the coordinates are (r, 𝜃, 𝜙).

Now for the special cases that simplify things. For an elastic solid in welded contact with a mate-
rial that is way more rigid and/or dense, the elastic waves will not penetrate into the second medium
because it can’t be deformed at all. Hence all three displacement components in the elastic solid
will be zero at the interface. As you now expect from the similar acoustic reflection from a rigid
wall, there is no constraint on the stress components. They can do whatever they like, I guess. The
other special case is an elastic solid with a free surface, that is, a seismic wave getting to the surface
of the earth. Air is so undense compared to rock that it might as well not even be there. To put it
another way, a moonquake would reflect from the airless moon surface essentially the same way
that an earthquake does here.3 The boundary condition then is that the normal surface tractions
are zero, which you’ll recall is the normal stress and the two components of the shear stress that
have the surface’s unit normal in them. Please refer back to the previous exercise so you’re clear
on this point. We’ll get in the habit of calling such an interface a free surface or just stress-free, but
it’s important to remember that doesn’t mean all six components of the stress tensor are zero at the
free surface. The in-plane normal and/or shear stress components might even be large. They just
don’t show up in the boundary conditions.

Of course, there are a variety of variations that one could introduce to model specific cases. For
example, there might be situations where the two materials are held tightly together such that the
normal stress component is continuous, but the shear stress components are not, or are even zero,
because the two materials can slide tangentially across one another just a bit. Sounds like that
would be unlikely, but “kissing bonds” are actually quite difficult to detect. They happen when a
glue joint has disbonded over part of the interface, but the two sides are still held together. There
are also a wide variety of situations where a glue joint has weakened somewhat due to manu-
facturing problems or unexpected aging and so some of the stresses won’t be transmitted across
the joint properly. That’s obviously an issue for the overall strength of the structure, but might be
something that can be detected because elastic waves will reflect and/or refract at the interface dif-
ferently. There are ongoing academic arguments about the right way to write down the boundary
conditions for such situations, but the problem is very real. Having a practical and reliable way to
non-destructively assess bond strength would allow adhesive joints to be used much more com-
monly. Spot-welds, rivets, etc. are a much less efficient way of joining components, but adhesive
bond strength is usually something that we have to test destructively by pulling on the joint until
it fails.

At an interface between an elastic solid and a fluid, we’ll find that it’s often the case that ultrasonic
waves both reflect and refract. In this case, the normal stress in the solid is balanced by the pressure
in the fluid. The shear stress components of the normal surface traction in the solid vanish at the
surface, unless it’s a viscous fluid, of course, but let’s not go there. Finally, the normal displacement
in the elastic solid is balanced by the normal displacement in the fluid, or if you prefer, the normal
velocity in the elastic solid is balanced by the normal velocity in the fluid. Do it either way, but be
consistent. Sonar people tend to do it one way, ultrasonic NDT folks the other. In frequency domain,
you’ll just have a factor of i𝜔 hanging around that will cancel. And, as you now have come to expect,
there won’t be any conditions on the tangential components of the displacements or velocities at
the interface.

3 The same goes for Mars where there’s so little atmosphere that nobody can hear you scream. https://www.science
.org/content/article/mars-no-one-can-hear-you-scream.

https://www.science.org/content/article/mars-no-one-can-hear-you-scream
https://www.science.org/content/article/mars-no-one-can-hear-you-scream
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3.4 Finite Difference Time Domain

In acoustics, electromagnetics, and elastodynamics, we have differential equations (plus boundary
conditions and initial conditions) that we want to solve for the “scattered” field. What we’ll find
is that there are a fairly restricted set of problems that we can actually solve analytically, and even
when we are able to grind out the solutions, we often find the “answers” to be such complex math-
ematical expressions that we have to code them up and evaluate them systematically to get much
understanding about the physical behavior. That begs the obvious question of why we don’t just
do scattering problems via numerical simulations. I have to admit that’s a fair point, but offer the
following arguments for consideration.

● No matter how big of a computer you have access to for simulating wave propagation and scat-
tering sorts of problems, you’re going to want a bigger and faster one, and if it’s a shared super-
computer, you’ll complain about how long your jobs wait in the queue before they run.

● The physical behavior we’re trying to understand is inherently complex enough that we often
won’t be able to tell whether simulation results make sense or are due to some sort of typo or bug
in our code.

I’ve watched with special interest since the late 1980s (Figure 3.2) as the sorts of computers
used for scattering calculations have increased their capabilities dramatically. Back in the day, a
VAX computer with a footprint the size of a conference room was just as fast as a 286 PC, except
that VAX typically had several (or many) users while you could sometimes have a PC all to yourself
without even having to share it. In a moderate-sized research lab, it was common practice for people
to politely ask everybody else to “please not run any jobs this weekend” so you could have all of the
computing power to try to get your job(s) to finish. Long holiday weekends were often especially
nice for this, although if you were trying to run several distinct cases, you often had to physically go
to the lab throughout the weekend to check the status of the jobs you hoped would finish and then
start new ones. Being able to queue up lots of jobs in a scheduler and then track their progress from
home seems too easy somehow, especially since simulations always seem to demand attention at
time intervals that are incompatible with a traditional human sleep-wake cycle. At least we don’t

Figure 3.2 Here I am in my Air Force office about 1990 or so. It took me a couple of years of steady effort
to scrounge up a complete set of matching gray steel office furniture.
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have to pedal the computers, but we do always seem to be spending a lot of wall-clock time waiting
for results. The reason these sorts of simulations require so much attention – even after we think
we have our codes debugged and ready for systematic use – is that we have to “look at” the results
to see if the code is running properly. Even a code that we’ve benchmarked and tested thoroughly
can behave strangely when we use it in a new scattering regime. Not only that, often the actual
scattering behavior can closely mimic the results you would get from a variety of numerical bugs.
Getting too greedy with the spatial and/or temporal simulation grid(s) can also cause rather serious
problems, and more worrisome is that they can change the results in subtle but significant ways.
That means we must have something to compare our simulation results to, and analytic scattering
solutions for canonical shapes turn out to be the answer.

As of 22 July 2024 my sense is that computers that researchers can afford to use routinely have
gotten to the point that we can simulate real 3D problems. That’s good news, of course, because
wave scattering is inherently three dimensional. It is a bit of a game changer, though, because
there are lots and lots of numerical techniques predicated on 2D somehow being the true limit of
such things. Those techniques were boring and unintuitive anyway, so I’m not really going to talk
about them much. Instead, let’s start with a conceptually simple, straightforward way of simulating
wave propagation and scattering. You may recall first learning about the concept of differentia-
tion as a limit of a finite difference. I happen to remember that particular lecture. I was sitting in
about the back row of a lecture hall that sat several hundred students, with the professor down in
front writing on an overhead projector with the clear plastic rolls that he could scroll backward to
clarify some prior point. The lecture hall was a domed theater built in 1906 as Temple Israel and
intended by the architect as a replica of Solomon’s Temple. The building is clad in white marble
and today much of it is covered in ivy, although BU is on the other side of the Charles River from
the Ivy League. We’re simply going to do that differences-to-derivatives lecture backward, that is,
we’ll replace the derivatives in our field equations and boundary conditions with the correspond-
ing differences. We’ll grid up the space in which the waves are propagating, including the scatterer,
and then march away in time. Alan Taflove cleverly called this sort of method finite-difference
time-domain (FDTD).4

Here is the definition of derivatives you learned way back in calculus.

df (x)
dx

= lim
h→0

f (x + h) − f (x)
h

= lim
h→0

f (x) − f (x − h)
h

(3.11)

= lim
h→0

f (x + h) − f (x − h)
2h

where h = xi+1 − xi and in the limit these three different ways of doing the difference are equiv-
alent. They’re called the forward-difference, backward-difference, and central-difference approxi-
mations, for the obvious reasons (Figure 3.3).

4 Allen Taflove received the BS, MS, and PhD degrees in electrical engineering from Northwestern University in
1971, 1972, and 1975, respectively. Since 1988, he was a full professor in the Department of Electrical Engineering
and Computer Science of Northwestern’s McCormick School of Engineering. He died at age 71 on 25 April 2021. A
dedicated teacher and adviser of undergraduate students, Allen was the first McCormick School faculty member to
be named both Teacher of the Year and Adviser of the Year in the same academic year (2005–2006). Allen was
inducted into the Amateur Radio Hall of Fame by CQ Magazine in recognition of his achievements in computational
electrodynamics. He was an FCC-licensed amateur radio operator since 1963, and credited amateur radio with
spurring his interest in electrical engineering in general, and electromagnetic fields and waves in particular.
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Figure 3.3 Forward (F), backward (B), and central (C) difference approximations each approximate the
slope of the curve at x in the limit of h → 0.

Now consider u(x), which is a differentiable function of x, and expand it in a Taylor series about
x. We write

u(x + h) = u(x) + u′(x)h + u′′(x)h2

2!
+ u ′′′(x)h3

3!
+ · · · (3.12)

and

u(x − h) = u(x) − u′(x)h + u′′(x)h2

2!
− u ′′′(x)h3

3!
+ · · · (3.13)

Add these two equations to get

u(x + h) + u(x − h) = 2u(x) + u′′(x)h2 + O(h4) (3.14)

so we can write, accurate to O(h4)

u′′(x) = 1
h2 [u(x + h) − 2u(x) + u(x − h)] + O(h4) (3.15)

or, with x = xi, x ± h = xi±1, we write

u′′
i =

ui+1 − 2ui + ui−1

h2 + O(h4) (3.16)

where ui ≡ u(xi) and so on. Subtracting the expression for u(x − h) from that for u(x + h) similarly
gives

u′
i =

ui+1 − ui−1

2h
+ O(h3) (3.17)

These two quite simple expressions allow us to replace all the first and second derivatives in our
differential equations and boundary conditions with finite differences and then write approximate
equations to simulate wave propagation and scattering. Of course, we have to chop up our simula-
tion space into a 3D grid and also take some care to match the approximate boundary conditions
at the scatterer surface. The obvious issues with approximating curved surfaces with stair-steps are
illustrated in Figure 3.4. For scattering problems, the grid has to be able to reproduce the relevant
geometry of the scatterers, but there also has to be a certain number of grid points per wavelength
of the highest-frequencies of the waves of interest. Of course, there will be some implementation
issues, but conceptually the FDTD method is exactly this straightforward.

Exercise 3.4 Write out the algebra to get the expressions for u′(x) and u′′(x) above. Is there any
advantage to keeping more terms in the Taylor series to try to get more accurate expressions?

That was all one-dimensional, but it works pretty much the same way in two and three dimen-
sions, except that there might be some advantage to using a coordinate system other than Cartesian.
For example, if your primary application was pipeline inspection it might be worth your while to



70 3 Boundary Conditions: Continuous and Discretized

Grid

Stair-step

Curve

Discretized space

Immediate

past

Immediate

future
P

Q S
R

T

Present

D
is

cr
et

iz
ed

 t
im

e

Figure 3.4 The physical space is divided up into a computational grid (left) so any curved surface has to be
approximated by a stair-step. Of course, a finer grid will better approximate the curved surface, but that
comes at the expense of computational time and necessary data storage. The future value at any node point
P depends on the current value at that point R as well as the values of the neighboring points Q and S. It
also depends on the prior value at that point T .

discretize things via a cylindrical coordinate system. When you think about it for a moment it’s
obvious that a cylindrical mesh is going to do a better job of fitting a pipe than will a Cartesian
grid, although if your grid gets fine enough, it isn’t going to matter much. Again, it’s my duty as an
old-timer to remind you that, no matter how big a computer you have, you’ll want a bigger one, so
adapting the mesh to the natural geometry of the problem probably makes good sense. There will
be some distortions of the wave propagation that are due to the spatial grid, and minimizing them
will come with some computational expense.

Exercise 3.5 What happens to a spherical wave on a rectangular grid?

Now note that the values of the field variables at any point are going to depend only on those
adjacent points that are nearest in space and time. The set of nodal points that need to be considered
when calculating the value at a particular point is called a stencil. It’s often convenient to draw the
stencil as a way to describe the particular differencing scheme that is being used.

Consider the 1D wave equation c2u′′ − ü = 0, where −∞ < x < ∞ and 0 ≤ t <∞ and we have
initial conditions u(x, 0) = f (x) and u̇(x, 0) = g(x). For x = xi and t = tj we write this as:

c2

h2

[
ui+1,j − 2ui,j + ui−1,j

]
= 1

k2

[
ui,j+1 − 2ui,j + ui,j−1

]
(3.18)

which can be rearranged to write, with 𝜆 = ck∕h

ui,j+1 = 2ui,j − ui,j−1 + 𝜆2 [ui+1,j − 2ui,j + ui−1,j
]

(3.19)

with the initial condition

ui,0 = fi ui,1 = kgi + fi −∞ < i <∞, j = 0, 1, 2,… (3.20)

Note that we have used the forward difference approximation for the second initial condition. With
P,Q,R, S,T defined as in Figure 3.4, we write

uP = 𝜆
2uQ + 2(1 − 𝜆2)uR + 𝜆2uS − uT (3.21)

So, the next value of the wave displacement, uP, depends on the value at that point at the current
time step, uR, as well as the two neighboring values at the current time step, uQ and uS. It also
depends on the value at that point one time step ago, uT , something that strikes most people as
strange.
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Next consider the traditional continuous version of the scalar wave equation

1
c2
𝜕

2u(x⃗, t)
𝜕t2 = ∇2u(x⃗, t) (3.22)

For a plane wave solution of the form

u(x⃗, t) = ei(⃗k⋅x⃗−𝜔t) (3.23)

and we have the dispersion equation 𝜔
2 = c2k2 as well as the phase velocity c2

p = 𝜔
2

k2 = c2 where
k2 = ⃗k ⋅ ⃗k. Hence the wave propagation is isotropic and nondispersive, which means that the phase
velocity is independent of ̂k and |||⃗k|||, respectively. In two Cartesian dimensions, the scalar wave
equation is written

𝜕
2u
𝜕t2 = c2

(
𝜕

2u
𝜕x2 + 𝜕

2u
𝜕y2

)
(3.24)

If we discretize the space over a square mesh, we can write this as:

d2um,n

dt2 = c2

h2

(
um−1,n + um+1,n + um,n−1 + um,n+1 − 4um,n

)
= ◊um,n (3.25)

where we haven’t discretized time at this point. We’ve used the symbol ◊ to indicate the stencil
in Figure 3.5. Note that this is the obvious way to calculate the differences, but as we’ll see shortly
there are many other options.

Now let’s discretize time as well, and in order to do a better job of keeping track of things, let’s
get into the excellent habit of using subscripts for the spatial grid points and superscripts for the
time step. That seems to be the way most people do it and it’s something that I can even keep track
of when I’m writing things out by hand. I’ve said it before but it bears repeatedly repeating that our
equations are usually pretty complicated, so it’s worth it to think through notations so that they
will help you catch inevitable botches.5

uj+1
m,n = −uj−2

m,n + 2uj
m,n + (cΔt∕h)2◊uj

m,n (3.26)

Note that the quantity cΔt∕h is called the Courant number, and cΔt∕h → 0 returns the contin-
uum limit as expected. In general, the Courant number should be small, something which we’ll
curse loudly and often. The spatial discretization, h, is sized both by the size of the features we
want to model accurately and the Nyquist-like rule of thumb of needing ten or so grid points per
wavelength. Hence, complex shapes or even simple shapes that don’t match the grid well will be
computationally expensive. All other things being equal, higher frequencies will be more com-
putationally expensive because the wavelength shrinks as the frequency increases. Nobody ever
really argues with those two points, but now look at the Courant number and note that h is on the
denominator. Keeping the Courant number small means that if the spatial grid is very fine then
we’re going to have to take baby steps in time. That alone will make you long for a faster computer.

Figure 3.5 The diamond stencil ◊ (a) uses the grid
points to the left/right and top/bottom. The box stencil ◽
(b) uses the diagonal grid points at the corners of the box. 1

1

1
(a) (b)

–4
1

1

–4

1

1 1

5 Botches are inevitable. You can only eliminate typos and such asymptotically, so don’t be paralyzed by the idea of
publishing something with a botch left in it. There might even be one in this next equation, say in the second term.
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Next let’s write the semidiscrete version of a plane-wave expansion and plug it into the semidis-
crete wave equation. We start with

um,n(t) = a(t)ei𝜔(xm cos 𝛼+yn sin 𝛼) (3.27)

and get, with 𝜔x = 𝜔 cos 𝛼 and 𝜔y = 𝜔 sin 𝛼

d2um,n

dt2 = c2a
[ (2 cos(𝜔xh) − 2) + (2 cos(𝜔yh) − 2)

h2

]
(3.28)

= −(𝜔c)2a

[
cos2

𝛼

( sin(𝜔xh∕2)
𝜔xh∕2

)2

+ sin2
𝛼

( sin(𝜔yh∕2)
𝜔yh∕2

)2]
a(t) = a(0)e±i𝜔c∗t (3.29)

where the numerical phase velocity of harmonic plane waves is

c∗ = c
√

2
𝜔h

(
2 − cos(𝜔xh) − cos(𝜔yh)

)1∕2 (3.30)

and we have

um,n = a(0)ei𝜔(xm cos 𝛼+yn sin 𝛼±c∗(𝜔,𝛼)) (3.31)

Because c∗ = c∗(𝜔, 𝛼), it is clear that the wave propagation is anisotropic. How much the phase
velocity depends on direction depends on the wavelength compared to the mesh spacing. Once
again, we come back to needing lots of grid points per wavelength in order to do an excellent job of
approximating reality.

Now consider the same problem, but with a slightly different stencil (Figure 3.5) using the diag-
onal neighbors. The semi-discrete wave equation is

d2um,n

dt2 = c2

2h2

(
um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1 − 4um,n

)
(3.32)

The corresponding phase velocity is given by

c∗(𝜔, 𝛼) = c
√

2
𝜔h

[
1 − cos(𝜔xh) cos(𝜔yh)

]1∕2 (3.33)

which is also anisotropic, but the phase velocity varies with direction in a different way for the ◽
stencil than it did for the ◊ stencil. For both cases, the waves propagate differently if they happen to
be headed in a direction that’s aligned with the grid vs. some other direction. That’s a bigger prob-
lem for us than you might think because we care about scattering problems where things might
start out lined up to the mesh, but the scattering is going to happen in pretty much all directions.
For most real-world problems that we’re going to simulate, the scattered field is going to be pretty
subtle and we might be looking for variations that are somehow of the same magnitude as distor-
tions of this sort. Even for strongly scattering situations, the scattered waves are going to tend to
decay spherically with distance from the scatterer, so detecting things from “far away” will still be
a challenge. In short, we have enough to worry about without numerical artifacts messing up our
results. You might suggest that we simply solve the problem via a spherical grid centered about the
scatterer, but the incident wave is then going to get distorted by that spherical grid and distortions
of the incident wave will do who knows what to the scattered field. It will cost us computer power
to fix this, as you might have guessed already.

Rather than inventing yet another stencil, let’s just put these two stencils together as follows
d2um,n

dt2 = c2 [
𝛽◽um,n + (1 − 𝛽)◊um,n

]
(3.34)
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where 𝛽 is a parameter between 0 and 1. For 𝛽 = 1∕4 and 𝛽 = 3∕4, the results don’t look too great,
but for 𝛽 = 1∕2 the results look damn good!

Actually if you do more sophisticated analyses, you find that the best results are obtained when
𝛽 = 0.4698, which I’m just a little bit skeptical of because I was expecting a round number or some-
thing.

In three dimensions you can do the same thing, but it’s a little more complicated. We define three
discrete Laplacian operators as:

∇2
100ut

l,m,n =

{
ut

l+1,m,n − 2ut
l,m,n + ut

l−1,m,n

h2 +
ut

l,m+1,n − 2ut
l,m,n + ut

l,m−1,n

h2 (3.35)

+
ut

l,m,n+1 − 2ut
l,m,n + ut

l,m,n−1

h2

}
and

∇2
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2
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+
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(3.36)

and

∇2
111ut
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3
4
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√
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(3.37)

If we then write the semi-discrete 3D wave equation as

1
c2
𝜕

2u
𝜕t2 =

(
𝛼∇2

100 + 𝛽∇
2
110 + 𝛾∇

2
111

)
u (3.38)

where 𝛼 + 𝛽 + 𝛾 = 1 so that h → 0 returns the continuum limit, we write the phase velocity as:

c∗ = c2

k2h2

{
2𝛼

[
3 − cos(kh sin 𝜃 cos𝜙) − cos(kh sin 𝜃 sin𝜙) − cos(kh cos 𝜃)

]
+ 𝛽

[
3 − cos(kh sin 𝜃 cos𝜙) cos(kh sin 𝜃 sin𝜙) − cos(kh sin 𝜃 cos𝜙) cos(kh cos 𝜃)

− cos(kh sin 𝜃 sin𝜙) cos(kh cos 𝜃)
]

+ 2𝛾
[
1 − cos(kh sin 𝜃 cos𝜙) cos(kh sin 𝜃 sin𝜙) cos(kh cos𝜙)

]}
(3.39)

Minimizing anisotropy then gives 𝛼 = 0.299, 𝛽 = 0.461, and 𝛾 = 0.240.

Exercise 3.6 Plot the phase velocity as 3D parametric plots for 𝛼 = 1, 𝛽 = 𝛾 = 0; 𝛼 = 0, 𝛽 = 1,
𝛾 = 0; 𝛼 = 𝛽 = 0, 𝛾 = 1. Then use 𝛼 = 0.299, 𝛽 = 0.461, and 𝛾 = 0.240, and you should get a perfect
sphere.

So now we’ve established that discretized wave propagation is dispersive and anisotropic unless
you make the computational mesh really small or employ some more complex stencil. Both of those
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are computationally pretty expensive, so it turns out that getting high-fidelity simulations means no
matter how large a computer you’re using you’re going to want a bigger one. Whatever computer(s)
you’re using, even if it’s the biggest cluster of them on earth, will only be able to deal with a finite
number of grid points, which you’re keeping track of at every time step in the simulation, and if
you’ve got a complicated stencil the effective number of grid points might be larger than the explicit
number of points in your computational space. Remember that we’re trying to solve scattering
problems where the fields scattered by the target are typically small compared to the incident wave.
With a finite-sized computational space, the incident waves will reflect off the edges and if you’re
not careful you could end up overwhelming the signal you care about with reflections you don’t
care at all about. A flashlight can be a really bad way to find your way around in a dark house
of mirrors. You’ll almost certainly end up shining the light back into your eyes and then making
faceprints onto a wall before you turn the flashlight off and just feel your way around. Of course,
you could imagine having such a very big computer that you can leave some extra room so the
echoes from the edges never bother you, but I have to tell you that’s pretty unlikely. Instead, what
you need is to make the nonphysical walls of your simulation volume not reflect the waves but
instead absorb them. Absorbing boundary conditions sometimes work pretty well, but they are
hard to make work in 3D for all angles. For elastic waves, it’s tricky to deal with both longitudinal
and shear waves simultaneously and you have to be careful not to kill off the bulk waves only to
generate nonphysical surface waves at the boundary. Nevertheless, it usually pays to spend some
of your computational power to damp out outgoing waves that you don’t want if you can do that
without introducing spurious reflected waves.

That’s probably enough introduction and warnings from an old-timer who fondly remembers
FORTRAN77. You can worry about most of these issues once you get a basic code up and running.
Radar still matters, of course, but the killer application for electromagnetic scattering these days
seems to be the new generations of wireless communication. Since electromagnetic wave interac-
tion with the built environment is highly dependent on frequency, changes in the carrier frequency
of the signal can have a strong impact on the reach of the network and a device’s ability to maintain
communications [27–29]. One approach to optimizing the effectiveness and coverage of a wireless
network is simulating wave propagation and scattering. You’ll be unsurprised to hear that one of
the most widely used methods for this is the finite difference time domain (FDTD) method, which
was introduced by Kane S. Yee in 1966 [30]. I recommend Taflove’s excellent book [31] for details.
You should be able to find a used copy quite inexpensively. Obviously, a lot has changed since 2005
and there are lots of more recent books on the subject, but by starting with this classic you will then
be in a position to critically evaluate other “more modern” treatments that may include chunks of
code in whatever programming language(s) you are comfortable with.

Let’s go all old school for a bit and consider Yee’s 1966 work.6 It’s good practice to get into the
habit of benchmarking your own code(s) with seminal results that have stood the test of time.

6 Kane S. Yee was born in Guangzhou, China. He received his BS and MS in electrical engineering from UC
Berkeley in 1957 and 1958, and PhD with Bernard Friedman in 1963. His dissertation involved the study of
boundary value problems for Maxwell’s equations. Dr. Yee first worked at Lockheed Missiles and Space Company,
researching diffraction of electromagnetic waves and then was a professor of electrical engineering and
mathematics at the University of Florida and later at Kansas State University. He was a consultant to Lawrence
Livermore National Laboratory and in 1987, he became a research scientist at Lockheed Palo Alto Research Lab,
working on computational electromagnetics problems and retiring in 1996. Surprisingly, his 1966 paper on the use
of a finite-difference staggered-grid algorithm in the solution of Maxwell’s equations received little attention at the
time of its release. Yee was initially motivated by his self-studies in FORTRAN to develop the method.
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Maxwell’s equations in an isotropic medium are

𝜕B⃗
𝜕t

+ ∇ × E⃗ = 0 B⃗ = 𝜇H⃗

𝜕D⃗
𝜕t

− ∇ × H⃗ = J⃗ D⃗ = 𝜖E⃗

where J⃗, 𝜇, 𝜖 are assumed to be given functions of space and time.
In a rectangular coordinate system, Maxwell’s equations are written

−
𝜕Bx

𝜕t
=
𝜕Ez

𝜕y
−
𝜕Ey

𝜕z

−
𝜕By

𝜕t
=
𝜕Ex

𝜕z
−
𝜕Ez

𝜕x
𝜕Bz

𝜕t
=
𝜕Ex

𝜕y
−
𝜕Ey

𝜕x
𝜕Dx

𝜕t
=
𝜕Hz

𝜕y
−
𝜕Ey

𝜕z
− Jx

𝜕Dy

𝜕t
=
𝜕Hx

𝜕z
−
𝜕Ez

𝜕x
− Jy

𝜕Dz

𝜕t
=
𝜕Hy

𝜕x
−
𝜕Ex

𝜕y
− Jz

Now denote a grid point in space as (i, j, k) = (iΔx, jΔy, kΔz) and write, for any function
F(iΔx, jΔy, kΔz,nΔt) = Fn

i,j,k.
For many of the most historically significant applications of electromagnetic scattering (e.g. using

radar to keep us safe from bad guys trying to sneak into our airspace with bombs and such), it’s an
excellent approximation to assume that scatterers made from metal are perfect electrical conduc-
tors. The boundary conditions are thus Etang ≡ 0 and if we assume that conducting surfaces are
well approximated by a collection of “stair-step” surfaces parallel to the grid axes, we’ll find that
plane surfaces perpendicular to the x-axis will be chosen so as to contain points where Ey and Ez
are defined.

A set of finite difference equations convenient for 3D simulations are written out fully on the
following page. For constant values of 𝜖 and 𝜇 computational stability requires that√

(Δx)2 + (Δy)2 + (Δz)2
> cΔt = Δt√

𝜇𝜖

If 𝜇, 𝜖 aren’t constant, then the maximum value of the speed of light anywhere in the computational
space will determine the limits on the time step relative to the spatial grid size. The mesh size is
limited by the need to accurately describe the shapes of the scatterer(s) with a stair-step boundary
as well as the requirement that the EM field not change significantly from one grid point to the
next, which in practice means that the grid spacing must be a small fraction of a wavelength.
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)
(3.40a)
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(3.40c)
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For clarity and so, we can make fun of what was possible computationally in 1966, let’s restrict
ourselves for the moment to 2D. Consider the TM case. When t = 0 we specify the initial conditions

E0
z (i, j) H1∕2

y (i + 1∕2, j) H1∕2
x (i, j − 1∕2)

throughout the entire grid. Boundary conditions for perfect conductors are En
z (i, j) = 0 for all n for

all the grid points corresponding to the scatterer surface. The incident wave is taken to be a half
sine wave and the square scatterer has sides of length 4𝛼 as shown in Figure 3.6.

We were easily able to reproduce Yee’s figures7 by plotting the value of the Ez component of the
wave at various time steps using our 3D FDTD code, the results of which are shown in Figure 3.6.

7 “We” means Dr. Margaret Rooney, who is a Research Mathematician at the Naval Research Laboratory. She holds
a BS in Mathematics from St. John’s University as well as MS and PhD degrees in Applied Science from William and
Mary. FDTD simulations of 5G wireless interaction with the built environment were a key aspect of her dissertation
research.
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Figure 3.6 Reproduction of Yee’s Fig 4 on right. The value of the Ez field in volts/meter is plotted over the
80 horizontal spatial steps in the computational grid. It’s good practice to make sure that your new code
accurately reproduces classic results in the literature that have stood the test of time.

Due to the appreciable advances in technology in the more than 50 years since Yee’s original inves-
tigation, these calculations now take mere seconds when run on modern desktop computers.

It bears repeating that the numerical stability of the finite difference method relies on the sizes of
the spatial and temporal steps. The choice of a suitable spatial step size depends on the frequencies
of the source signal because an accurate simulation of the signal propagation requires spatial steps
to be several times smaller than the wavelength of the highest frequency component. For simu-
lations using the higher mmWave frequencies, Δ must be on the order of millimeters to properly
characterize signal environment interactions. This change in spatial step proportionally increases
the size of the computational grid, often resulting in a much more computationally intensive sim-
ulation. That was a bit of an understatement.

So, the size of our computational grid is necessarily finite and rather severely constrained by the
reasonable limits imposed by the spatial step to an edge length of several (or even many) meters.
Therefore, it is necessary to implement absorbing boundary conditions (ABCs) to prevent reflec-
tions from the edges of the grid from reentering the computation space. In the decades since the
FDTD method of solving Maxwell’s equations was first introduced by Yee, many types of absorb-
ing boundary conditions have been developed to enhance the accuracy of simulations by allowing
waves to exit the computational space cleanly, thereby giving the illusion that the waves are prop-
agating through an infinite space.

We performed a comparison between two widely used types of ABCs: Mur’s ABCs [32] coupled
with Mei-Fang’s superabsorption equations [33], and a uniaxial perfectly matched layer (PML) [34]
based on Béreneger’s PML [35–37]. Our goal was to assess which method would be more practical
to use for larger and more complex simulation scenarios. We found [38] there was no significant
difference between the reflections allowed by the two types of ABCs, so we decided to proceed using
the FDTD version with Mur ABCs. You’ll want to revisit this question yourself as you develop your
own FDTD code.

Using a parallel computing cluster, we can directly compare measurements and 3D FDTD sim-
ulations [38]. Software-defined radio units (SDRs) are used to transmit and receive signals, which
then interact with the built environment. The motivation for this work is the newer generations of
wireless communication networks at higher frequencies where understanding in some detail the
RF interaction with the built environment is key to optimizing network performance.
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Figure 3.7 Snapshots of simulations where mmWave signals interact with corners in the environment. Top
pair is for a food truck with metal skin. Bottom pair is for a corner of a building with a brick facade. Metal is
a perfect reflector at mmWave frequencies, whereas brick reflects some of the signal and transmits some, as
we will consider in Chapter 4.

In Figure 3.7, we show early and later-time snapshots from simulations where mmWave sig-
nals interact with corners. We were able to use these simulations to compare directly to measure-
ments [39].

Our goal is to understand the scattering sufficiently well that we can identify subtle time-domain
features in waveforms to distinguish between signal occlusion, by a truck or building corner, from
signal termination. Cognitive radio is a way to anticipate and exploit spectrum vacancies in order
to make optimal use of the available bandwidth [40–49]. Allowing unlicensed spectrum users to
transmit on underpopulated or empty licensed frequency bands encourages efficient use of EM
radio spectrum resources. Detecting frequency bands not currently in use by licensed primary users
(PUs) gives unlicensed secondary users (SUs) an opportunity to transmit on these channels until
the PU resumes its transmission, at which time the SU can switch to another vacant channel if it
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needs to continue transmission. A key issue in CR and 5G wireless is understanding interactions of
RF with the built environment, which means our hard-won knowledge of radar scattering analysis
and simulation methods is (again) suddenly important.

3.5 Elastodynamic Simulations

Guided ultrasonic waves are attractive for aircraft structural health monitoring because they are
quite sensitive to thinning due to corrosion. In Figure 3.8, Lamb waves in an aluminum plate, with
and without a rectangular thinned region, are shown.8 Most analytic methods only account for
the wave speed changes due to thickness changes, but simulations illustrate nicely the complex
scattering of the guided waves, which occur even in this rather simple scenario. The elastodynamic
finite integration technique (EFIT) evolves from the basic wave equations for elastic solids [50–58].
We start with Hooke’s law and Cauchy’s equation of motion to give the fundamental equations.
The differential form of the equation of motion

𝜌𝑣̇x =
𝜕𝜎xx

𝜕x
+
𝜕𝜎xy

𝜕y
+
𝜕𝜎xz

𝜕z
+ fx (3.42)

𝜌𝑣̇y =
𝜕𝜎xy

𝜕x
+
𝜕𝜎yy

𝜕y
+
𝜕𝜎yz

𝜕z
+ fy (3.43)

𝜌𝑣̇z =
𝜕𝜎xz

𝜕x
+
𝜕𝜎yz

𝜕y
+
𝜕𝜎zz

𝜕z
+ fz (3.44)

and the first time derivative of Hooke’s law in differential form

𝜎̇ij = 𝜆𝜖̇kk𝛿ij + 2𝜇𝜖̇ij, (i, j = x, y, z) (3.45)

where we sum over the repeated index k because that’s the tensor index. We can then discretize
(3.42)–(3.45) as follows:

𝜌𝑣̇x
(n)(t) =

𝜎
(n+x̂)
xx (t) − 𝜎(n)xx (t)

Δx
+
𝜎
(n)
xy (t) − 𝜎

(n−ŷ)
xy (t)

Δy
+
𝜎
(n)
xz (t) − 𝜎

(n−ẑ)
xz (t)

Δz
+ fx(t)

𝜌𝑣̇y
(n)(t) =

𝜎
(n)
xy (t) − 𝜎

(n−x̂)
xy (t)

Δx
+
𝜎
(n+ŷ)
yy (t) − 𝜎(n)yy (t)

Δy
+
𝜎
(n)
yz (t) − 𝜎

(n−ẑ)
yz (t)

Δz
+ fy(t)

𝜌𝑣̇z
(n)(t) =

𝜎
(n)
xz (t) − 𝜎

(n−x̂)
xz (t)

Δx
+
𝜎
(n)
yz (t) − 𝜎

(n−ŷ)
yz (t)

Δy
+
𝜎
(n+ẑ)
zz (t) − 𝜎(n)zz (t)

Δz
+ fz(t)

𝜎̇
(n)
xx (t) = (𝜆 + 2𝜇)

𝑣
(n)
x (t) − 𝑣(n−x̂)

x (t)
Δx

+ 𝜆

(
𝑣
(n)
y (t) − 𝑣(n−ŷ)

y (t)
Δy

+
𝑣
(n)
z (t) − 𝑣(n−ẑ)

z (t)
Δz

)

𝜎̇
(n)
yy (t) = (𝜆 + 2𝜇)

𝑣
(n)
y (t) − 𝑣(n−ŷ)

y (t)
Δy

+ 𝜆

(
𝑣
(n)
x (t) − 𝑣(n−x̂)

x (t)
Δx

+
𝑣
(n)
z (t) − 𝑣(n−ẑ)

z (t)
Δz

)

𝜎̇
(n)
zz (t) = (𝜆 + 2𝜇)

𝑣
(n)
z (t) − 𝑣(n−ẑ)

z (t)
Δz

+ 𝜆

(
𝑣
(n)
x (t) − 𝑣(n−x̂)

x (t)
Δx

+
𝑣
(n)
y (t) − 𝑣(n−ŷ)

y (t)
Δy

)

8 These simulation snapshots are from the doctoral dissertation of Cara Leckey, who is currently the Branch Head
of the Nondestructive Evaluation Sciences Branch at NASA Langley. Cara holds a BS in Physics from Mary
Washington as well as MS and PhD in Physics from William and Mary. At LaRC she has served as the Project Lead
for the High Performance Computing Incubator as well as the Center Transformation Portfolio Manager and a
Detail with NASA Langley Legislative Affairs.
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Figure 3.8 Lamb waves in an aluminum plate. Left image is an unflawed plate. Right image is a plate with
a rectangular thinning indicated by the dashed rectangle. Note that the wavefront is distorted by
interacting with the thinned region, which both scatters the Lamb waves and changes the wave speed.

𝜎̇
(n)
xy (t) = 𝜇
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x − 𝑣(n)x

Δy
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𝑣
(n+x̂)
y − 𝑣(n)y

Δx
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x − 𝑣(n)x

Δz
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(n)
yz (t) = 𝜇
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(n+ẑ)
y − 𝑣(n)y

Δz
+
𝑣
(n+ŷ)
z − 𝑣(n)z

Δy

)
. (3.46)

We can invoke stress-free boundary conditions in our simulation boundaries when our interest
is in guided elastic waves in structures at MHz frequencies where the solid-air interfaces can be
considered traction-free surfaces. That minimizes the need for absorbing boundary conditions, but
as always, we must satisfy the Courant–Friedrichs–Levy-criterion by having about 10 grid points
per shear wavelength. In practice this means that for a sample that is about 1 mm thick and in the
1 MHz frequency range, we need on the order of 10 grid points per millimeter.

We have also used EFIT simulations to investigate the effects of a limpet mine on a guided waves
propagating in ship’s hull where the ship hull acts as a thick steel plate and the limpet mine can
be estimated as a 3 kg mass adhered to the plate.9 Figure 3.9 shows the simulation space geometry
of the mass loading on the plate as well as the elastic guided wave propagating in the expected
manner.

Two more real-world applications of EFIT bear mentioning. The first is for rail-mounted gantry
cranes at the Port of Virginia [59]. Depressions in the roadbed cause dips in the rail which lead to
flat spots in the wheels which stress the wheel bearings and by the time excess current draw shows
up in the electric drive motors the fix can be as much as US 75k. Picking up vibrations propagating
down the rail allows imperfections to be detected much earlier when tamping the roadbed costs US
750. EFIT simulations allow us to understand the guided wave propagation in the rails to design
machine learning strategies to identify flaw signals as early as possible. The second is an underwater
sonar beacon which is deployed beneath Arctic ice floes where oil spills have been detected. The

9 Dr. Jill Bingham grew up in Norfolk, VA and then after earning a BA in Physics from Carleton College (and
playing Ultimate) she came back to Virginia and earned a PhD in Applied Science. After a little more than 2 years at
the Naval Research Laboratory, Dr. Bingham moved to Seattle where she has been a BR&T NDI Engineer at Boeing
since 2011.
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Figure 3.9 As the EFIT simulation steps through time, the guided waves interact with a mass loading on
the steel plate and keep on propagating through the plate with distortions due to scattering and then
interactions with the edge of the finite plate.
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beacon transmits kHz sonar signals up into the ice [60] deflected by an integral reflector cone to
preferentially generate Lamb wave modes in the ice, which spread out in all directions to be picked
up by air-dropped mesh-radio accelerometer modules that triangulate the source location and then
transmit that information to stakeholders via an Iridium satellite link. FDTD simulations were used
to optimize the design of the sonar beacon/reflector. As I may have said, it’s new things all the time
in my lab and we like to solve problems that matter out in the real world.

3.6 The Acoustic Parametric Array

We have been investigating the use of passive infrared and acoustic echolocation sensors for mobile
robotics applications [61–65] including classifying oncoming vehicles using acoustic backscatter-
ing. We are most interested in the applicability of acoustic echolocation sensors as medium- to
long-range sensors, detecting and classifying objects at distances exceeding 50 m. Such long prop-
agation distances limit the upper frequency of the acoustic signal, since the absorption of sound in
air is proportional to the frequency squared, requiring an acoustic signal in the audible range.

A directional signal will allow us to focus most of the sound energy on the target in question,
increasing the amplitude of the backscattered signal and the probability that the signal contains
useful information about the target. The directivity of a speaker depends on the ratio of the
wavelength of sound produced to the physical size of the speaker. Sound in the audible range
will have wavelengths between 17 m and 17 mm, calculated as 𝜆 = c

f
for frequency f and sound

speed c = 343 m/s in air. This explains why a normal bookshelf-sized stereo speaker will produce
directional high-frequency sound, since the wavelength is much less than the size of the speaker,
but nondirectional room-filling low-frequency sound. Creating highly directional, low-frequency
sound would require an impractically large array. Even 1–4 kHz acoustic signals contain wave-
lengths of 8.5–34 cm, requiring a loudspeaker array several meters across in order to create a
highly directional signal.10

A practical way to create highly directional low-frequency sound is the acoustic parametric
array [66–87], which exploits the nonlinearity of air to create a highly directional beam of
sound, even at low frequencies. Physically, the device is comprised of many small ultrasound
transducers that simultaneously produce waves over a range of ultrasonic frequencies, in pairs.
As the large-amplitude ultrasonic signals propagate through a nonlinear medium, nonlinear
effects create signals at the sum and difference frequencies. Since attenuation is proportional to
the square of frequency, at large propagation distances only the difference (audible) frequency
remains.

Because the parametric array is only emitting ultrasonic signals, it can be fairly small yet cre-
ate directional beams of low-frequency sound. These devices are commercially available and can
connect to mp3 players or computers using a standard 1/8′′ phone jack, though high-fidelity repro-
duction of music is difficult due to the narrow bandwidth inherent in the design of the devices.

10 Elwood “Woody” G. Norris won the 2005 Lemelson-MIT Prize as Inventor of the Year. He is widely recognized
as a prolific inventor and a talented technology integrator. Mr. Norris joined the U.S. Air Force in 1956 and was
trained as a Nuclear Weapons Specialist, specializing in electronic fusing systems. He studied electronics at the
University of New Mexico. In 1959, he began working at the University of Washington where he continued his
practical education, elevating his position from technician to Director of the Engineering Experiment Station within
two years. HyperSonic Sound (HSS) is his trade name for a directional loudspeaker that shapes the sound wave to
fill only a predetermined area much as a spotlight narrows its beam. Woody founded American Technology
Corporation (now LRAD), which is publicly traded and is marketing products to customers around the world.
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We began exploring the use of parametric arrays on the day after 9/11. It was clear almost imme-
diately that better airport screening technologies were needed, and focused acoustic waves held
promise for both penetrating clothing and reflecting back from secreted, nonmetallic contraband.
The parametric array provides a way to do this in a nonimaging, stand-off manner which is key to a
variety of civilian and military checkpoint scenarios. Understanding the complex nonlinear acous-
tic propagation and then the 3D scattering when the difference-frequency beam interacts with the
person, led us to do extensive simulations of a variety of scenarios of interest.

After the so-called underwear bomber, in order to make you feel safe while flying, the TSA began
the practice of touching your junk at the airport. Complaining that didn’t make you feel safe would
get you taken into a back room where the TSA would touch up inside your junk and then you’d
miss your flight. A noncontact, modesty-preserving method to rapidly screen for underwear bombs
seemed like an obvious win-win. Figure 3.10 shows a sequence of snapshots from a simulation of
the underwear bomber scenario [88].

To describe this nonlinear sound propagation, we start with the Westervelt equation

∇2p = 1
c2

0

𝜕
2p
𝜕t2 − 𝛿

c4
0

𝜕
3p
𝜕t3 − 𝛽

𝜌0c4
0

𝜕
2p2

𝜕t2 (3.47)

Here, 𝛿 is the sound diffusivity, described in terms of the shear viscosity 𝜇, bulk viscosity 𝜇B,
thermal conductivity k, and specific heats at constant volume and pressure c

𝑣
and cp

𝛿 = 1
𝜌0

(4
3
𝜇 + 𝜇B

)
+ k
𝜌0

(
1
c
𝑣

− 1
cp

)
(3.48)

The coefficient of nonlinearity, 𝛽, is described in terms of the measured nonlinearity parameter
B∕A [89]

𝛽 = 1 + B
2A

(3.49)

Higher values of 𝛽 (and likewise, B∕A) correspond to greater nonlinear effect. The value of B∕A
for air at 20 ∘C is 0.4, compared to a value of 5 in water at the same temperature. This is why
propagation of sound in air can be explained as a linear phenomenon in many cases. On the other
hand, body fat has a B∕A value of 9.9, requiring a nonlinear wave equation to accurately describe
the wave propagation in body tissues [90, 91], assuming you want to pre-screen rollercoaster riders
for BMI.

A more mathematical description of nonlinear wave propagation comes from the Khokhlov–
Zabolotskaya–Kuznetsov (KZK) equation

𝜕
2p

𝜕z𝜕𝜏
=

c0

2
∇2

⟂p + 𝛿

2c3
0

𝜕
3p
𝜕𝜏

3 + 𝛽

2𝜌0c3
0

𝜕
2p2

𝜕𝜏
2 (3.50)

which describes the propagation of a directional sound beam along spatial dimension z while
accounting for diffraction, thermoviscous absorption (𝛿), and nonlinearity (𝛽). The KZK equation
is a parabolic approximation which makes the assumption that effects due to diffraction are much
larger than those due to nonlinearity, that is, that transverse changes to the wave are much larger
than axial changes. This approximation introduces errors at more than 20∘ from the axis and within
several radii of source. Alternative models exist to more accurately model wave behavior very near
the source, but our typical applications do not require us to know the pressure near field.

Numerical simulations of the KZK equation [92, 93] allow us to visualize the nonlinear beam of
sound produced by the acoustic parametric array. This gives us some idea of the extent of the beam
and its interaction with the environment, allowing us to ensure that most of the sound energy
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Figure 3.10 Side and top views of acoustic waves scattering from a model torso with a simulated
underwear bomb. The goal is to detect concealed explosive devices from beyond the “lethal radius,” which I
take to mean the distance beyond which the suicide bomber doesn’t get his junk all over you when he
detonates the bomb. Not shown in this figure are results of the test we performed on backscattering from a
simulated underwear bomb. Yes, one of our engineers did agree to wear one and be scanned, but I’m
assured that no photos of that day exist. (a) Geometric model of torso and legs with C4, (b) vertical slice,
and (c) horizontal slice.
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comes from interaction with the target of interest and not from interaction with extraneous objects
in the environment. In order to gain a better understanding of the interaction of the acoustic beam
with the target, we then switch to a 3D linear, full-wave numerical simulation [94].

We start with the linearized conservation of mass and momentum, generalized to include pres-
sure and velocity source functions M and F⃗, respectively:

𝜕p
𝜕t

+ 𝜌0c2
0 ∇ ⋅ 𝑣 = M (3.51)

𝜌0
𝜕𝑣

𝜕t
+ ∇p = F⃗ (3.52)

A finite difference simulation would approximate these derivatives directly, but instead we inte-
grate over a control volume, which is a cube in Cartesian space. For the pressure, we use the
standard central-difference

ṗ(t) =
p(t+ Δt

2
) − p(t− Δt

2
)

Δt
(3.53)

with time step Δt to arrive at

p(t+ Δt
2
) = p(t− Δt

2
) − 𝜌0c2

0
Δt
Δx

[(
𝑣

1+
1 − 𝑣1−

1
)
+
(
𝑣

2+
2 − 𝑣2−

2
)
+
(
𝑣

3+
3 − 𝑣3−

3
)]

+ MΔt (3.54)

while for the velocity, we use an integer indexed central difference

𝑣
(t) = 𝑣

(t−Δt) + 𝑣̇(t−
Δt
2
)Δt (3.55)

with spatial step Δx to arrive at

𝑣
(t)
1 = 𝑣

(t−Δt)
1 − Δt

𝜌0Δx
−
(

p1+ − p1−) + F1
Δt
𝜌0

𝑣
(t)
2 = 𝑣

(t−Δt)
2 − Δt

𝜌0Δx
−
(

p2+ − p2−) + F2
Δt
𝜌0

𝑣
(t)
3 = 𝑣

(t−Δt)
3 − Δt

𝜌0Δx
−
(

p3+ − p3−) + F3
Δt
𝜌0

(3.56)

This discrete set of equations for pressure and velocity given by (3.54) and (3.56) provides updates
to the staggered grid in space and time. The size of the spatial step Δx (which is also the size of a
single grid cell) is limited by the upper frequency in the simulation. In general, maintaining sta-
bility requires at least six grid points per wavelength. For our simulations, we use eight points per
wavelength, so the minimum step size is Δx = ds = 𝜆

8
. The minimum time step is related to the

spatial step size by the Courant condition

Δt = dt ≤ Δx
c
√

3
(3.57)

To study the acoustic scattering from vehicles, we created models of real-world scattering objects
and imported them into our computational space. Visualizations of the scattered pressure field
allow us to study how a scatterer’s shape affects the backscattered reflection, providing specific
information that will add to our intuitive knowledge of scattering behavior.

Direct simulations of the 100 and 250 ms chirp signals we use in our measurements are not prac-
tical on the distributed computing resources available to us. Instead, we use a delta pulse as input
so that the scattered pressure field is effectively the impulse response of the system. Since this is
a linear system once the nonlinear conversion to difference frequency is complete, convolution of
the impulse response pressure field with any signal will provide the pressure field for that incident
signal. Using this technique to create the whole backscattered pressure field would require a con-
volution at each point in the volume and is not a computationally efficient procedure. However, we
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Figure 3.11 A three-dimensional contour plot allows visualization of surfaces of equal pressure at a single
time. These visualizations work well for input signals of short duration. Surfaces of equal pressure are
shown when the short-pulse signal is first incident on the front of the truck model scatterer and a short time
later after the signal has been reflected from the entire truck. Source: [65]/with permission of ProQuest LLC.
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can do this when we are looking at pressure data as a function of time at a specific spatial coordinate,
for example, the location of the microphone recording the backscattered acoustic signal.

While our simulation output consists of pressure values for each point in the three-dimensional
simulation space at a given time step, displaying this data as a three-dimensional volume is often
not ideal. Data in the interior of the volume, where the scattering behavior we are most interested
in occurs, is obscured by data from the edges of the volume (Figure 3.11). Decreasing the opacity
of the pressure data at points on the edges of the space allows observation into the interior at the
cost of a direct correlation between color values and pressure values.

However, we have found that the best way to visualize scattering behavior is to take slices through
the pseudocolor volume. This also has an advantage over volume visualizations in that it requires
less graphical power to create renderings–not a problem for our modest-sized simulation spaces
but an important issue in other simulations. The three-dimensional contour plot can also be sliced
to create two-dimensional contour lines.
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4

Reflection and Refraction

You might think it’s a little funny that there’s a whole chapter on reflection and refraction. You
might be thinking how much there is to say about Snell’s law. Good point. Presumably that was all
covered in the optics part of frosh physics, with periodic refreshers as needed over the subsequent
semesters. Acoustic reflection and refraction are equally simple, with angle of reflection equal to
angle of incidence, and angle of refraction determined by the index of refraction. Easy.

There might be some subtleties involved. From Wikipedia,

Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the
interface (boundary) from one medium to another (e.g. from water to air) are not refracted
into the second (“external”) medium, but completely reflected back into the first (“internal”)
medium. It occurs when the second medium has a higher wave speed (i.e. lower refractive
index) than the first, and the waves are incident at a sufficiently oblique angle on the inter-
face. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from
below, reflects the underwater scene like a mirror with no loss of brightness.

That’s a rather poor effort, Wikipedia. How exactly do you expect me to view the surface of a fish
tank from below? Somebody should hate-edit that entry, but then it would probably just get edited
back. A better way to think about TIR is diamonds, which are neither rare nor inherently valuable,
BTW. Everything you think about diamonds is a part of a carefully crafted marketing campaign
by the De Beers Corporation who maintained an amazingly effective monopoly over the sale of
cut diamonds for a century. Making you think that diamonds are forever is just a way to prevent
you from finding out that they have almost no resale value [1]. Lab-grown diamonds are now 80%
cheaper, BTW.

The sparkliness of diamonds comes from TIR. Remember we were talking about reflection and
refraction? In 1919, Marcel Tolkowsky1 found that if the diamonds were cut at the correct angle
to make use of TIR (Figure 4.1), it would greatly improve their brilliance, fire, and sparkle. This
understanding of TIR has been used ever since when cutting diamonds.

One of my graduate students just said to me: “I think the reflection and refraction with water
are useful to talk about. A figure of the refraction causing shapes to shift under water can drive
home the point. Things like a head a foot away from the body, or the dark ring underwater at
about 89∘ where no light comes through the surface because the full arch was bent into 89∘ is

1 Marcel Tolkowsky, an engineer by education, was a Belgian member of a Jewish family of diamond cutters from
Poland. Tolkowsky, as part of his PhD topic at the University of London, systematically studied the grinding of
diamonds. In his book Diamond Design, he published the specifications of what would later be called the American
Standard, derived from mathematical calculations that considered both brilliance and fire of the stone.

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.
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θc θc θc

Figure 4.1 Light entering the top of a diamond will be reflected back out the top if it is cut correctly so
total internal reflection occurs. Even light entering from the sides of the diamond, if cut correctly, can
reflect the light upward when you hold your hand out so everybody can ooh and ahh over your giant rock.
My wife used to say that if you can lift your hand, the diamond is too small. De Beers’ advertising evil
geniuses figured out that, “A woman can easily feel that diamonds are ‘vulgar’ and still be highly
enthusiastic about receiving diamond jewelry” (Caveat emptor: https://youtu.be/N5kWu1ifBGU).

interesting.” I don’t know his thoughts on Pokémon cards or diamond engagement rings, but he is
married and has kids who go to the pool in the summer. He has a fancy camera on his phone. Did
he take a picture at the pool to drive home the point? Nope. I guess you’ll just have to find some
on the internet. If you try to take one yourself, have a container of uncooked white rice handy. To
demonstrate the refraction and the limit at 48.5∘ (half angle for the 89 dark region), Figure 4.2 is
included, though. The cut off for water into air reflection can be clearly seen.

When you do get around to searching the internet for interesting pictures that explain TIL, you’ll
find that examples include mirages and optical fibers. There will be a few underwater photos
of fishes and Olympic swimmers, and even some low-angle shots of aquariums of the sort that
Wikipedia referred to. There will be photos of glasses of water with straws and that one weird fin-
gerprint picture that seems to show up everywhere. You’ll also find a variety of videos purporting
to explain this and related optics phenomenon to the general public.
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Figure 4.2 The amplitude ratios of the reflected and refracted vertically polarized light traveling through
an air–water interface like the surface of a swimming pool. The dark dash-dot line is reflection from water
into air. The solid dark line is refraction from water into air. The gray dash-dot line is reflection from air into
water. The solid gray line is refraction from water into air. Note the clear cutoff, where no light is refracted,
at 48.5∘ or beyond.

https://youtu.be/N5kWu1ifBGU
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Exercise 4.1 Are there any TIR-related phenomena that would make it feasible to fuse underwa-
ter and overhead video streams to make swimming competitions more interesting? Obviously, the
surface of the water gets disturbed, but that might be a relatively small effect for the leaders in some
cases. I have a water-proof GoPro around here somewhere and a very large ultrasound immersion
tank for some proof-of-concepts experiments. You’ll want to roll up your sleeves, of course.

We’ll come back to optics using the full machinery of electromagnetics, but first, I want to discuss
reflection and refraction of elastic waves, which have the additional complication that we call mode
conversion. That turns out to make it worth having a whole chapter about reflection and refraction.2

In an infinite homogeneous isotropic elastic medium, the longitudinal and transverse waves
propagate independently, that is, they do not interact with each other. If the material parameters
vary in space, then a propagating L wave generates T waves and vice versa. The same takes place
at a boundary between two media. This “mode coupling” is included implicitly in the boundary
conditions. We’ll consider four different types of interfaces.

1) Welded contact between elastic half-spaces: The displacement as well as the force per unit
area of the interface S must be continuous.(

u(1)
j − u(2)

j

)
S
= 0

(
𝜎
(1)
nj − 𝜎(2)nj

)
S
= 0

for j = 1, 2, 3, and where n is the index of the axis normal to S. The superscripts 1 or 2 denote
the half-spaces.

2) Contact between half-spaces with slip: The normal displacement and the normal compo-
nent of stress are continuous, the tangential component of force being zero at S.(

u(1)
n − u(2)

n

)
S
= 0

(
𝜎
(1)
nn − 𝜎(2)nn

)
S
= 0

𝜎
(1)
nj
|||S = 𝜎

(2)
nj
|||S = 0 ( j ≠ n)

Note that there is no summation on the n despite the repeated index. Also note that the common
situation we’ll face is a fluid in contact with a solid, in which case the normal stress in the solid
is balanced by the pressure in the fluid at the boundary and the shear stress in the solid is zero
at the interface.

3) Welded contact with an infinitely rigid wall: All displacements will be zero at the boundary.

uj
|||S = 0 ( j = 1, 2, 3)

2 Prof. Robert E. Green Jr., who came to Johns Hopkins in 1960, established the Center for Nondestructive
Evaluation, an interdisciplinary group of academic and industrial partners. Green was raised near the naval
shipyards in Virginia, where his father worked as a machinist. At a young age, he knew he wanted to be a scientist
when he grew up, but he didn’t consider physics until he attended William & Mary where he received his bachelor’s
degree in physics in 1953. He went on to study under Robert Bruce Lindsay, an acoustic physicist, at Brown
University, where he received his master’s degree in 1956 and his PhD in 1959. Green considered himself to be an
“applied physicist.” In an interview with the American Institute of Physics in 2000, he recounted his invitation to
join the faculty at Johns Hopkins 40 years earlier: “I received a letter from Johns Hopkins asking me if I wanted to
apply for [an] assistant professor position in their mechanical engineering department. And I told them, ‘No, I was a
physicist, I didn’t want to be an engineer, I didn’t like engineers,’ and they wrote back, ‘Wonderful. That’s the kind
of guy we are looking for.”’ As Department Chair he viewed his primary job as beating up on the Dean. Green felt
blessed to have worked with so many “outstanding students” who went on to do so well. Bob died on 21 November
2017 at age 85.

When Prof. Green retired, he passed the leadership of CNDE to his deputy, Dr. Boro Djordjevic, but Boro was less
skilled at beating up on deans (having spent most of his career in industry) and CNDE folded. Born in Yugoslavia,
Boro was a William and Mary alum, where his mother was a Chemistry professor, and he played on the W&M
soccer team some years before John Stewart. Boro died 26 November 2023.
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Figure 4.3 Incident, reflected, and transmitted
waves at an interface between two half-spaces.

4) Boundary of elastic solid with vacuum: Often referred to as a stress-free surface or just a free
surface, the normal surface tractions are zero.

𝜎nj
|||S = 0 ( j = 1, 2, 3)

Air has a low-enough density compared to solids that elastic waves at MHz frequencies reflect
from a solid-air boundary like a free surface. Water is dense enough that there is significant
transmission through solid-water boundaries. In that case, use condition 2 above with shear
stress zero in the fluid and normal stress equal to pressure.

Now let’s consider the reflection and refraction of elastic waves from the interface between two
elastic half-spaces, illustrated in Figure 4.3. This is something that’s straightforward to simulate
using the EFIT technique from the Chapter 3. Indeed, I recommend that students do exactly this
as soon as they get their EFIT codes up and running. I was going to apologize for Figure 4.4 being
upside down, but you shouldn’t get too hung up on the particular way I drew Figure 4.3. Rotate the
page if it’s a problem.

I should note that in this chapter, I’m mostly following the notation of K. Graff’s excellent book
[2], which you want for your personal library. While you’re at it, pick up a copy of [3] and keep a
look out for the book by Viktorov [4] which I checked out from my university library more than a
decade ago and plan to renew every year until I retire because I’m afraid that it will get discarded

Steel

Incident

wave

Brass

θinc

θtrans

Figure 4.4 Elastic wave in a steel block incident upon a brass wedge angled at 30∘. A dotted black line
shows the location of the steel-brass boundary. The left image shows a 2D vertical slice through the 3D
simulation space of the wave at time t = 127 μs; the image on the right shows the behavior of the scattered
and transmitted longitudinal waves at t = 282 μs. The white lines in the right image show the surface
normal at the steel-brass boundary. The calculated longitudinal transmitted (refracted) angle is shown.
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along with other old books to make room for more massage chairs or 3D printers or whatever.
(Look back to the Chapter 3 references for a bunch more books that are relevant.) You probably
prefer eBooks, so keep a look out for PDF versions that you can download and archive locally or in
a cloud service that you control. Things that are freely available online today could end up behind
a paywall tomorrow. “Who controls the past controls the future; who controls the present controls
the past.” I remember a time several years ago when legally purchased copies of 1984 got yanked
back off of everybody’s Kindles overnight. Because reasons. The incident, reflected, and refracted
waves (refer to Figure 4.3 as needed) are written

u⃗(n) = And(n)ei𝜂n (4.1)

where An is the amplitude, d(n) is the polarization, and the phase term is

𝜂n = kn

(
x1p(n)

1 + x2p(n)
2 − cnt)

)
(4.2)

where n = inc, refl, trans are for incident, reflected, and transmitted waves. Yes, I know this notation
is kind of cumbersome and I don’t particularly care for it, but the idea is to show how all the various
cases are alike and different.

For the incident wave, the propagation direction is

p⃗(inc) = sin 𝜃i
̂i1 + cos 𝜃i

̂i2 (4.3)

If the incident wave is a longitudinal wave, we have

⃗d
(inc)

= p⃗(inc) ci = cL

and for an incident transverse wave we have

⃗d
(inc)

⋅ p⃗(inc) = 0 ci = cT

Note that this allows for two polarization, SV-waves and SH-waves. That terminology is from seis-
mology, where the transverse, or shear, waves are the second to arrive because they are slower than
the longitudinal, or primary, waves. With regard to the surface of the earth, the SH-waves are hor-
izontally polarized, which means that the physical displacement is back and forth parallel to the
surface. The SV-waves are vertically polarized for a wave that is traveling horizontally. For incident
transverse waves, we have

SV ∶ ⃗d
(inc)

= ̂i3 × p⃗(i) SH ∶ ⃗d
(inc)

= ̂i3 ci = cT

We will find that the L and SV waves are coupled together at the boundary while the SH wave is
not coupled to either one. Reflected and transmitted (refracted) waves will be both L and SV waves
if the incident wave is either L or SV . To summarize, incident, reflected, and transmitted L and SV
waves are:

u⃗L
inc = A0

(
sin 𝜃0

̂i1 + cos 𝜃0
̂i2
)

exp ik0
(

x1 sin 𝜃0 + x2 cos 𝜃0 − cLt
)

u⃗L
refl = A1

(
sin 𝜃1

̂i1 − cos 𝜃1
̂i2
)

exp ik1
(

x1 sin 𝜃1 − x2 cos 𝜃1 − cLt
)

u⃗SV
refl = A2

(
cos 𝜃2

̂i1 + sin 𝜃2
̂i2
)

exp ik2
(

x1 sin 𝜃2 − x2 cos 𝜃2 − cTt
)

u⃗L
trans = A3

(
sin 𝜃3

̂i1 + cos 𝜃3
̂i2
)

exp ik3
(

x1 sin 𝜃3 + x2 cos 𝜃3 − c′Lt
)

u⃗SV
trans = A4

(
− cos 𝜃4

̂i1 + sin 𝜃4
̂i2
)

exp ik4
(

x1 sin 𝜃4 + x2 cos 𝜃4 − c′Tt
)

Here A0 is the amplitude of the incident L-wave and A1–A4 are unknown amplitudes. These coeffi-
cients, as well as the angles 𝜃1–𝜃4 and wavenumbers k1–k4 are to be determined from the boundary
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conditions. Recall welded contact

uinc
1 + urefl

1 = utrans
1 uinc

2 + urefl
2 = utrans

2

𝜎
inc
12 + 𝜎refl

12 = 𝜎
trans
12 𝜎

inc
22 + 𝜎refl

22 = 𝜎
trans
22

all of which are applied at x2 = 0. Note that we haven’t bothered to write continuity of the other
tangential displacements or of the other shear stresses, since four equations are enough to solve for
the four unknowns A1–A4.

Now recall Hooke’s law and the strain–displacement relation

𝜎ij = 𝜆𝜖kk𝛿ij + 2𝜇𝜖ij 𝜖ij =
1
2
(
𝜕jui + 𝜕iuj

)
(4.4)

so we can write the stress components that we need

𝜎22 = 𝜆(𝜖11 + 𝜖22) + 2𝜇𝜖22

= (𝜆 + 2𝜇)
𝜕u2

𝜕x2
− 2𝜇

𝜕u1

𝜕x1

𝜎12 = 2𝜇𝜖12 = 𝜇

(
𝜕u1

𝜕x2
+
𝜕u2

𝜕x1

)
Hence

𝜎
inc
22 = ik0A0

{
(𝜆 + 2𝜇)(cos2

𝜃0 + sin2
𝜃0) − 2𝜇 sin2

𝜃0
}

eik0(x1 sin 𝜃0+x2 cos 𝜃0−cLt) (4.5)

or

𝜎
inc
22 = ik0A0

{
(𝜆 + 2𝜇) − 2𝜇 sin2

𝜃0
}

eik0x1 sin 𝜃0 eik0x2 cos 𝜃0 e−i𝜔t (4.6)

and

𝜎
inc
12 = ik0𝜇A0

{
2 sin 𝜃0 cos 𝜃0

}
eik0x1 sin 𝜃0 eik0x2 cos 𝜃0 e−i𝜔t (4.7)

and so on for the reflected and transmitted stress components. Now consider the first displacement
boundary condition equation

uinc
1 + (uL

1 + uSV
1 )refl = (uL

1 + uSV
1 )trans

where we’ve explicitly written that the reflected and transmitted waves have both L and SV parts.
We have

uinc
1 = A0 sin 𝜃0eik0x1 sin 𝜃0 eik0x2 cos 𝜃0 e−i𝜔0t

urefl
1 = A1 sin 𝜃1eik1x1 sin 𝜃1 e−ik1x2 cos 𝜃1 e−i𝜔1t + A2 cos 𝜃2eik2x1 sin 𝜃2 e−ik2x2 cos 𝜃2 e−i𝜔2t

utrans
1 = A3 sin 𝜃3eik3x1 sin 𝜃3 eik3x2 cos 𝜃3 e−i𝜔3t + A4 cos 𝜃4eik4x1 sin 𝜃4 eik4x2 cos 𝜃4 e−i𝜔4t

so we write, at the boundary x2 ≡ 0

A0 sin 𝜃0eik0x1 sin 𝜃0 e−i𝜔0t + A1 sin 𝜃1eik1x1 sin 𝜃1 e−i𝜔1t + A2 cos 𝜃2eik2x1 sin 𝜃2 e−i𝜔2t

= A3 sin 𝜃3eik3x1 sin 𝜃3 e−i𝜔3t + A4 cos 𝜃4eik4x1 sin 𝜃4 e−i𝜔4t (4.8)

This boundary condition equation must hold for all time, so we can conclude that 𝜔0 = 𝜔1 = 𝜔2 =
𝜔3 = 𝜔4 ≡ 𝜔, which isn’t particularly surprising. It follows then that

k0 = k1 = 𝜔

cL
≡ k k2 = 𝜔

cT
≡ K

k3 =
𝜔

c′L
≡ k′ k4 = 𝜔

c′T
≡ K′
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Similarly, because the boundary conditions must hold for all values of x1 we get Snell’s law which
relates the angles to each other

k sin 𝜃0 = k sin 𝜃1 = K sin 𝜃2 = k′ sin 𝜃3 = K′ sin 𝜃4 (4.9)

Hence, the boundary condition equation for continuity of u1 simplifies to

A0 sin 𝜃0 + A1 sin 𝜃1 + A2 cos 𝜃2 = A3 sin 𝜃3 − A4 cos 𝜃4 (4.10)

Similarly for the u2 boundary condition equation, we get

A0 cos 𝜃0 − A1 cos 𝜃1 + A2 sin 𝜃2 = A3 cos 𝜃3 + A4 sin 𝜃4 (4.11)

The algebra for stresses is similar. We can then write the four boundary condition equations in a
matrix equation⎡⎢⎢⎢⎢⎢⎣

− sin 𝜃1 − cos 𝜃2 sin 𝜃3 − cos 𝜃4
cos 𝜃1 − sin 𝜃2 cos 𝜃3 sin 𝜃4
sin 2𝜃1

cL
cT

cos 2𝜃2
𝜇
′

𝜇

cL
c′L

sin 2𝜃3 − 𝜇
′

𝜇

cL
c′T

cos 2𝜃4

−
(

cL
cT

)2
cos 2𝜃1

cL
cT

sin 2𝜃2
𝜇
′

𝜇

cL
c′L

(
c′L
c′T

)2
cos 2𝜃3

𝜇
′

𝜇

cL
c′T

sin 2𝜃4

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

A1
A2
A3
A4

⎞⎟⎟⎟⎟⎠
= A0

⎛⎜⎜⎜⎜⎝
sin 𝜃0
cos 𝜃0
sin 2𝜃0(

cL
cT

)2
cos 2𝜃0

⎞⎟⎟⎟⎟⎠
(4.12)

Exercise 4.2 Do the algebra to verify this expression and implement it on a computer to solve for
and plot A1∕A0 and A2∕A0 as functions of 𝜃0.

For incident SV waves, the incident plane wave is

u⃗SV
inc = B0

(
− cos 𝜃0

̂i1 + sin 𝜃0
̂i2
)

eiKx1 sin 𝜃0 eiKx2 cos 𝜃0 e−i𝜔t (4.13)

with B1–B4, the unknown coefficients of the reflected and transmitted waves, which are of the same
form as before. The boundary condition equations are written⎡⎢⎢⎢⎢⎢⎣

− sin 𝜃1 − cos 𝜃2 sin 𝜃3 − cos 𝜃4
cos 𝜃1 − sin 𝜃2 cos 𝜃3 sin 𝜃4
sin 2𝜃1

cL
cT

cos 2𝜃2
𝜇
′

𝜇

cL
c′L

sin 2𝜃3 − 𝜇
′

𝜇

cL
c′T

cos 2𝜃4

−
(

cL
cT

)2
cos 2𝜃1

cL
cT

sin 2𝜃2
𝜇
′

𝜇

cL
c′L

(
c′L
c′T

)2
cos 2𝜃3

𝜇
′

𝜇

cL
c′T

sin 2𝜃4

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

B1
B2
B3
B4

⎞⎟⎟⎟⎟⎠
= B0

⎛⎜⎜⎜⎜⎝
− cos 𝜃0

sin 𝜃0
− cL

cT
cos 2𝜃0

cL
cT

sin 2𝜃0

⎞⎟⎟⎟⎟⎠
(4.14)

Exercise 4.3 Do the algebra to verify this expression and implement it on a computer to solve for
and plot B1∕B0 and B2∕B0 vs. 𝜃0.

Note from Snell’s law that when 𝜃0 = 0 (normal incidence), the other angles are also zero. Con-
sider the L-wave case⎡⎢⎢⎢⎢⎢⎣

0 −1 0 −1
1 0 1 0
0 cL

cT
0 − 𝜇

′

𝜇

cL
c′T

−
(

cL
cT

)2
0 𝜇

′

𝜇

cL
c′L

(
c′L
c′T

)2
0

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

A1
A2
A3
A4

⎞⎟⎟⎟⎟⎠
= A0

⎛⎜⎜⎜⎜⎝
0
1
0(

cL
cT

)2

⎞⎟⎟⎟⎟⎠
(4.15)

where A2 and A4 are decoupled from A0, A1, and A3. We conclude that A2 = A4 = 0 and find that

A1

A0
=
𝜌
′c′L − 𝜌cL

𝜌
′c′L + 𝜌cL

≡
Z′ − Z
Z′ + Z

(4.16)
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A3

A0
=

2𝜌cL

𝜌
′c′L + 𝜌cL

≡
2Z

Z′ + Z
(4.17)

where Z = 𝜌cL and Z′ = 𝜌
′c′L are the acoustic impedances of the two materials.

By eliminating the A2 and A4 columns, and the u2 and 𝜎12 rows we could have just written the
following 2 × 2 system for normal incidence⎡⎢⎢⎣

−1 −1

−
(

cL
cT

)2
𝜇
′

𝜇

cL
c′L

(
c′L
c′T

)2
⎤⎥⎥⎦
(

A1
A3

)
= A0

(
1(

cL
cT

)2

)
(4.18)

Two other simple special cases are for reflection from a rigid wall and reflection from a free surface.
In both cases, A3 and A4 are zero, by definition because there’s no transmitted waves. For the rigid
wall, the displacements are zero at x2 = 0 which gives[

− sin 𝜃1 − cos 𝜃2
cos 𝜃1 sin 𝜃2

](
A1
A2

)
= A0

(
sin 𝜃0
cos 𝜃0

)
(4.19)

which you can solve by hand using Cramer’s rule to get expressions for A1∕A0 and A2∕A0 vs. 𝜃0.
For reflection from a stress-free surface at x2 = 0, we similarly have⎡⎢⎢⎣

sin 2𝜃1
cL
cT

cos 2𝜃2

− c2
L

c2
T

cos 2𝜃1
cL
cT

sin 2𝜃2

⎤⎥⎥⎦
(

A1
A2

)
= A0

(
sin 2𝜃0

c2
L

c2
T

cos 2𝜃0

)
(4.20)

The explicit solution to this system gives the reflection coefficients

A1

A0
=

sin 2𝜃0 sin 2𝜃2 −
c2

L
c2

T
cos22𝜃2

sin 2𝜃0 sin 2𝜃2 +
c2

L
c2

T
cos22𝜃2

(4.21)

A2

A0
=

2 c2
L

c2
T

sin 2𝜃0 cos 2𝜃2

sin 2𝜃0 sin 2𝜃2 +
c2

L
c2

T
cos22𝜃2

(4.22)

Next consider an L-wave in water incident upon a solid elastic half-space, where we can assume
that there are no reflected shear waves A2 ≡ 0, but we must allow for transmitted shear waves in
the solid. We could get to this result by considering the fluid to be a solid with a shear rigidity that
has gone to zero (𝜇 → 0) giving the 3 × 3 system⎡⎢⎢⎢⎣

− sin 𝜃1 sin 𝜃3 − cos 𝜃4
0 𝜇

′ cL
c′L

sin 2𝜃3 −𝜇′ cL
c′T

cos 2𝜃4

−𝜌c2
L cos 2𝜃1 𝜇

′ cL
c′L

(
c′L
c′T

)2
cos 2𝜃3 𝜇

′ cL
c′T

sin 2𝜃4

⎤⎥⎥⎥⎦
⎛⎜⎜⎝

A1
A3
A4

⎞⎟⎟⎠ = A0

⎛⎜⎜⎝
sin 𝜃0

0
𝜌c2

L cos 2𝜃0

⎞⎟⎟⎠ (4.23)

Exercise 4.4 Check this result by performing the limiting process from the full 4 × 4 system.
You’ll need to perform some row operations before taking the limits, of course.

Exercise 4.5 Derive the 3 × 3 systems for both L- and SV -waves in an elastic solid half-space
obliquely incident on a fluid boundary. Recall that the coefficient matrix is the same for both cases.
Plot the L and SV reflection coefficients and the L-wave transmission coefficients vs. angle for a
bunch of different materials for both L- and SV -wave incidence. When you run your code you may
find some angles beyond which things don’t behave “nicely” and that those angles are different for
different materials.
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4.1 Reflection from a Free Surface

Consider the reflection of an oblique L wave at a free surface as shown in Figure 4.5. Figure 4.6
includes several snapshots from a simulation for a steel block with an angled free surface. The
reflected mode converted waves are noted, as are the angles of reflection for both the L and SV

Figure 4.5 Incident and reflected elastic waves
at a free surface of a half-space.
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Figure 4.6 Elastic wave in a steel block scattering from an angled free surface at 20∘. Both axes represent
the number of spatial steps. The circular transducer is on the top surface of the block. Image (a) shows a 2D
vertical slice through the 3D simulation space of the wave at time t = 87μs, (b)–(d) show additional
snapshots of wave propagation, (e) longitudinal and shear waves after reflection and mode conversion,
(f) calculated angle of reflection for longitudinal wave, and (g) calculated angle of reflection for the shear
wave.
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incidence cases. Again, rotate the page if you need to, since it’s a different orientation from the
previous figure. Sorry, not sorry.

The amplitude ratios are given by

A1

A0
=

sin 2𝜃1 sin 2𝜃2 −
(

cL∕cT
)2cos22𝜃2

sin 2𝜃1 sin 2𝜃2 +
(

cL∕cT
)2cos22𝜃2

(4.24)

A2

A0
=

2 sin 2𝜃1 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 +
(

cL∕cT
)2cos22𝜃2

(4.25)

as in the previous section. Once you get used to the idea of mode conversion, there’s nothing too
surprising about this situation. Angle of reflection for the L wave is equal to the angle of incidence,
as usual, but the mode-converted SV reflects at a different angle, which depends on the material.
It’s kind of interesting to imagine exploiting this behavior to design measurement schemes, where
the SV wave(s) can be steered into directions that would otherwise be difficult to reach. You can
also imagine all sorts of confusion arising from echoes returned by mode-converted wave modes
scattering from features in places that weren’t expected. This is doubly true if you forget for a hot
minute that the L and SV modes have different velocities. We get so used to mapping time delay of
echoes to physical distance that, if you don’t know for sure which wave mode is causing the echoes
you’re looking at, you can misinterpret both the direction and distance of the feature. The other
thing that becomes apparent, for example, in Figure 4.7, is that the fraction of the incident L wave
energy that is mode converted into the SV wave depends both on angle and on material.

Next let’s consider the same case (Figure 4.5), but for an incident SV wave. We’ll again have both
reflected L and SV waves, except that this time the L wave is the mode-converted one. The angle
of reflection for the SV mode is, of course, equal to the angle of incidence. The angle of reflection
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Figure 4.7 Incident and reflected elastic waves at a free surface of a half-space. Dashed lines are for A1∕A0
for various Poisson’s ratios. Solid lines are for the mode-converted waves A2∕A0. Note that for normal
incidence, 𝜃1 = 0, there is no mode conversion and, of course, for 𝜃1 = 90 ∘ , there is no reflection, per se.
Note that the angle of maximum mode conversion into reflected shear wave depends somewhat on the
material.
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for the L mode is different, and depends on the material according to Snell’s Law. The amplitude
ratios are given by

B1

B0
=

sin 2𝜃1 sin 2𝜃2 −
(

cL∕cT
)2cos22𝜃2

sin 2𝜃1 sin 2𝜃2 +
(

cL∕cT
)2cos22𝜃2

(4.26)

B2

B0
=

−2
(

cL∕cT
)2 sin 2𝜃1 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 +
(

cL∕cT
)2cos22𝜃2

(4.27)

Note that there is some value of 𝜃2 such that sin 𝜃1 =
(

cL∕cT
)

sin 𝜃2 = 1. If you code up these simple
equations and set about making some plots, you’ll be faced with the question: What about 𝜃2 greater
than the “critical” angle where the plot cuts off? Figures 4.8 and 4.9 illustrate this situation.

Since cL > cT we have cL∕cT > 1 and for 𝜃2 beyond the critical angle Snell’s law predicts that
sin 𝜃1 > 1, which is clearly impossible. It turns out that we’ll have to go back and re-examine our
governing equations, since the simple reflection model we’ve set up here doesn’t seem to be work-
ing beyond the critical angle. Note that in Figure 4.5 the reflected L wave is between the reflected
SV wave and the surface. This is always the case because the L waves are faster than the SV waves.
Please page back and stare at Snell’s Law for a moment. So, as the angle of incidence gets more and
more oblique, the reflected L wave will start to get squeezed up between the reflected SV wave and
the surface, eventually resulting in the situation shown in Figure 4.8. More on this situation in just
a bit. Take a look at Figure 4.9 in the meantime.

But first we need to talk about earthquakes. And lifequakes. Tectonic plates move about as fast
as your toenails grow. Some people think getting a mani-pedi is self-care and some people don’t
want strangers touching their feet. Some people who have to hold their breath while they cut their
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Figure 4.8 Incident and reflected SV elastic waves at a free surface of a half-space beyond the critical
angle generates a wave mode that travels along the surface instead of reflecting from it. The critical angle
depends on Poisson’s ratio and so is different for different materials. The phenomenon is analogous to total
internal reflection in optics and turns out to be both quite interesting and quite useful. The wave mode that
travels along the surface is called a Rayleigh wave.
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0° 0°

45°

(a) (b)

45°

33.2°

90° 90°

Figure 4.9 Reflection at steel/air interface for incident L-wave (a) and incident SV-wave (b). Dashed line is
the mode-converted reflected wave, normalized to highlight the angular scattering behavior. Note for the
incident SV-wave, there is a critical angle of 33.2∘ beyond which there is total internal reflection.

own toenails should probably cut down on the carbs a bit. As tectonic plates try to slide against
each other, like is happening in California, they generate shear stress which is periodically released
when some local stress limit is reached and part of the one plate jerks forward. There’s no way to
know when “the big one” is going to happen except that it will happen eventually. Earthquakes
radiate out in all directions from the point(s) of release. It’s important to keep in mind that the
Richter Scale is base-ten logarithmic, so an additional point on the Richter Scale is ten times as
bad. Recently there was a 5.1 earthquake in southern California, which is no big deal. It only made
the news because it happened during the first tropical storm to hit southern California in about a
century and reporters on the scene were having trouble getting people excited about four inches
of rain in the desert even though that was record rainfall for them. The new word, “hurriquake”
briefly trended and then we were right back to wildfires and whatnot.

I mentioned earthquakes because there are four wave modes to be concerned about, and the
Rayleigh waves are the most worrisome. Assuming that the point of origin of the earthquake is
down under the ground somewhere, which seems to be a safe assumption, then the seismic waves
will propagate outward from that point in three dimensions. Some of that energy will be noted by
seismologists in other countries, perhaps quite far away, who will be all excited because they live for
that. They will call their friends to see if they got the signals too. The game then becomes analyzing
the signals to figure out where the earthquake was and how severe it was.

Nearer to the source, the seismic waves will head up toward the surface. The fastest wave modes
are longitudinal waves, which seismologists call P waves because they arrive first and so are Pri-
mary. There are also transverse waves, which seismologists call S waves because they are slower and
arrive second so they are Secondary and they are also shear waves so the S seems to fit pretty well.
The horizontal and vertical polarizations of the shear waves are called SH and SV for the obvious
reason that the earth is locally flat-ish and side-to-side swaying feels different from up-and-down
shaking. Look back at Figure 4.8 for just a second, and note that the SV waves will convert to
Rayleigh waves for those surface locations far enough away from the underground source that the
SV waves arrive at the surface beyond the critical angle.
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One more bit of geometry. The L, SV, and SH waves are radiating out in three dimensions, so
the fall-off in amplitude with distance goes like 1∕r3. But the Rayleigh waves are bound to the
surface, which is why we call them surface waves, and that means that their fall-off in amplitude
with distance goes like 1∕r2. Thus, they pack a punch farther away from the source. In addition,
they shake your house both up-and-down and front-to-back. They actually make your house do a
little elliptical dance, which the structural engineers may or may not have allowed for in the design.
Certainly, they didn’t design your bungalo to get shaken that way while at the same time, it was
being buffeted by a tropical storm and simultaneously hit with a wall of mud from that hillside that
just burned and is now ineffectively absorbing a year’s worth of rain in an afternoon.

I may have mentioned that I did radar scattering while in the Air Force. I almost did seismology.
After the Challenger exploded and the space program stopped, instead of going on active duty, I
stayed at the university and got a master’s degree. The thesis I wrote was on attenuation of elastic
waves due to scattering from inhomogeneities, with application to modeling seismic wave attenu-
ation. Then the Air Force insisted that I put on my uniform and get a haircut and report for duty in
California because I owed four years of service in exchange for a scholarship. Somehow my advi-
sor got my orders changed and had the Air Force instead assign me to Hanscom AFB near Boston
so I could continue in graduate school while I was on active duty. It almost worked out perfectly,
because that base was home to the Air Force Geophysics Laboratory where they did seismology
research. I said, “almost.”

One more word for you, since I assume you’re old enough to remember the COVID-19 pandemic.
Lifequake is a word that describes some significant disruption in your life. It could be mostly just
you or it could be everybody. Lifequakes seem to happen every 6–10 years or so. I’ve been through
a bunch of them. You can never tell when they’re going to happen, and you can’t just sit around
waiting for the sky to fall. You will almost certainly find as you go through your career that some-
thing you were becoming expert in and was the best thing going will suddenly become irrelevant.
Redirect your efforts. Reinvent yourself. Get back to work.

That’s enough philosophizing from an almost-seismologist who unintentionally became an
expert in radar scattering just before the Cold War ended. Rayleigh waves are useful for lots of
things besides earthquakes, so let’s take another crack at the equations and derive some solutions
that model them on purpose.

4.2 Surface Waves

Recall that a Helmholtz decomposition of the displacement vector allows us to write
u⃗ = ∇Φ + ∇ × H⃗ and so in two dimensions we have

ux = 𝜕Φ
𝜕x

+
𝜕Hz

𝜕y
uy =

𝜕Φ
𝜕y

−
𝜕Hz

𝜕x

uz = −
𝜕Hx

𝜕y
+
𝜕Hy

𝜕x
𝜕Hx

𝜕x
+
𝜕Hy

𝜕y
= 0

so that Φ and the components of H⃗ satisfy

∇2Φ = 1
c2

L

𝜕
2Φ
𝜕t2 (4.28)

∇2Hp = 1
c2

T

𝜕
2Hp

𝜕t2 (p = x, y, z) (4.29)
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Note that there is no z-dependence for any of the above quantities because that’s the way we’ve set
up the geometry. We can thus consider the plane strain case where solutions are of the form

Φ = f (y)ei𝜉x−𝜔t Hz = hz(y)ei𝜁x−𝜔t (4.30)

for the time-harmonic case. These give

d2f
dy2 + 𝛼2f = 0

d2hz

dy2 + 𝛽2hz = 0 (4.31)

where

𝛼
2 = 𝜔

2

c2
L
− 𝜉2

𝛽
2 = 𝜔

2

c2
T
− 𝜁2 (4.32)

The plane wave solutions for Φ and Hz are then given by

Φ= A1ei(𝜉x−𝛼y−𝜔t) + A2ei(𝜉x+𝛼y−𝜔t) (4.33)

Hz = B1ei(𝜁x−𝛽y−𝜔t) + B2ei(𝜁x+𝛽y−𝜔t) (4.34)

where

𝜉 = k sin 𝜃1 𝛼 = k cos 𝜃1 k = 𝜔∕cL

𝜁 = K sin 𝜃1 𝛽 = K cos 𝜃1 K = 𝜔∕cL

Note in this solution that we have assumed 𝛼2
> 0 in deriving the results. Snell’s law allows us to

write

𝛼
2 = k2 (1 − sin2

𝜃1
)
= k2

(
1 − K2

k2 sin2
𝜃2

)
(4.35)

Hence, at the critical angle, where K2

k2 sin2
𝜃2 = 1 we have 𝛼2 ≡ 0 and beyond the critical angle where

K2

k2 sin2
𝜃2 > 1 we have 𝛼2

< 0.
We are, of course, correct in saying that sin 𝜃1 cannot be greater than unity, but that just means

that beyond the critical angle 𝛼 is no longer real. Let’s go back and reevaluate, by considering the
governing equations for 𝛼2 = 0 and 𝛼2

< 0. Recall that

Φ = f (y)ei(𝜉x−𝜔t) d2f
dy2 + 𝛼2f = 0 (4.36)

For the 𝛼2 = 0, case we have
d2f
dy2 = 0 ⟹ f = A1y + A2 (4.37)

and we conclude that

Φ = (A1y + A2)ei(𝜉x−𝜔t) (4.38)

The integration coefficient A1 must be zero on physical grounds because non-zero A1 would makeΦ
tend to infinity at large y. Yes, I know that finite A1 is a perfectly acceptable mathematical solution,
but this is exactly the sort of place where the applied mathematician gets to pull rank. We have a
particular sort of physical problem that we’re trying to model here. A plane elastic wave is reflecting
from a free surface and there’s some angle where the math tells us some stranger thing is going on
in the upside down. However, it’s not strange enough for a finite-amplitude disturbance to give rise
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to some sort of weird reflected wave at a critical angle that ends up having infinite amplitude. Sorry.
We’re thus left with

Φ = A2ei(𝜉x−𝜔t) (4.39)

which is a plane wave of constant amplitude traveling parallel to the free surface. Nothing wrong
with that. It even gets an acronym: SSLW stands for surface-skimming longitudinal wave. It shows
up in ultrasonics fairly often, although real transducers are finite in size and are typically excited
by a spike or a tone burst rather than a continuous signal. Nevertheless, this math does a pretty
good job of describing what is seen experimentally. We could try to mess with the mathematicians
at this point and argue that this analysis only works exactly at the critical angle and no surface is
exactly flat even if you could point your transducer in exactly the right direction, etc., but SSLWs
do show up in practice not just in the upside down.

When 𝛼2
< 0, we have

d2f
dy2 = −𝛼2f = 0 𝛼

2 = −𝛼2 (4.40)

and hence

Φ = A1e+𝛼yei(𝜉x−𝜔t) + A2e−𝛼yei(𝜉x−𝜔t) (4.41)

Again we discard the A1 term because that part of the field grows exponentially as y increases.
The result is a wave propagating in the x-direction whose amplitude falls off exponentially in the
y-direction.

Let’s step back for just a minute and see if this math makes physical sense. We start with an
obliquely incident shear wave, and up to a certain angle we get both a reflected shear wave and
a reflected longitudinal wave. That may still sound weird to you, but mode conversion is a fact of
life with elastic waves. Some people think that’s what makes them fun. Others were very happy
to unceremoniously dump the elastic solid theory of the aether in favor of Maxwell’s equations
because mode conversion makes elastic waves kind of hard. Plus you don’t need tensor notation to
model electromagnetics.

Now note that the mode-converted P-wave is more shallow than the reflected SV -wave, although
the particular angle the P-wave reflects at depends on the material constants, and so there will be
some incidence angle where the reflected P-wave gets sort of mashed up against the surface and
“reflects” parallel to it. That’s the SSLW and it happens at the critical angle. Beyond the critical
angle, we don’t have an SSLW anymore, but because the displacement falls off exponentially with
depth it’s obvious that most of the wave energy is near the surface. We call this a “surface wave” and
we’ll find them to be useful enough that we’re now going back to the field equations again and see
about deliberately modeling such things. In addition, I recently purchased a Stranger Things Ouija
board at Target and was disappointed to find that there was nothing printed on the underside. It’s
not the first time I’ve wasted twenty bucks at Target. Back to what happens beyond the critical
angle.

We have

∇2Φ + 1
c2

L

𝜕
2Φ
𝜕t2 ∇2Hz +

1
c2

T

𝜕
2Hz

𝜕t2 (4.42)

and

Φ = f (y)ei(𝜉x−𝜔t) Hz = hz(y)ei(𝜉x−𝜔t) (4.43)
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but with f (y) and hz(y) given by solutions to

d2f
dy2 − 𝛼2f = 0

d2hz

dy2 − 𝛽
2
hz = 0 (4.44)

where 𝛼2 = −𝛼2 and 𝛽
2
= −𝛽2. The physical parts of the solution are

Φ = Ae−𝛼yei𝜉(x−cRt) Hz = Be−𝛽yei𝜉(x−cRt) (4.45)

Boundary conditions are 𝜏yy = 𝜏xy = 0 at y = 0, which give two equations in the two unknown coef-
ficients A and B(

𝛽

2
+ 𝜉2

)
A + 2i𝛽𝜉B = 0

−2i𝛼A +
(
𝛽

2
+ 𝜉2

)
B = 0

so that

A
B

= −2i𝛽𝜉

𝛽

2
+ 𝜉2

= 𝛽

2
+ 𝜉2

2i𝛼𝜉
(4.46)

and (
𝛽

2
+ 𝜉2

)2
− 4𝛼𝛽𝜉2 = 0 (4.47)

where

𝛼
2 = 𝜉

2 − 𝜔2∕c2
L 𝛽

2
= 𝜉

2 − 𝜔2∕c2
T

Noting that 𝜔 = 𝜉∕cR gives(
2 −

c2
R

c2
T

)2

= 4

(
1 −

c2
R

c2
T

) 1
2
(

1 −
c2

R

c2
T

) 1
2

(4.48)

This can be rewritten as:
c2

R

c2
T

{
c6

R

c6
T
− 8

c4
R

c4
T
+
(
24 − 16∕𝜅2) c2

R

c2
T
− 16

(
1 − 1∕𝜅2)} = 0 (4.49)

which is a reduced cubic equation in c2
R

c2
T

whose roots are dependent on Poisson’s ratio because

𝜅
2 = 2(1 − 𝜈)

1 − 2𝜈
Note that

cR

cT
≈ 0.87 + 1.12𝜈

1 + 𝜈
The particle motion for the Rayleigh wave is elliptical and retrograde with respect to the direction
of propagation, that is, counterclockwise for a wave traveling to the right, which is analogous to but
opposite from water waves. The vertical component of displacement is about 1.5 times greater than
the horizontal component, typically. The motion decreases in amplitude away from the surface, but
at a depth of 0.192 wavelengths, the direction of particle motion reverses.

Exercise 4.6 Consider the reflection of an obliquely-incident SH-wave from a free surface. Recall
that SH-waves are not coupled to P-waves like SV -waves are. Set up and solve this simpler boundary
condition problem, and if any critical angles show up determine whether surface waves result.
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One of the reasons I don’t get too freaked out about lifequakes is that I know math, and so when
the world changes and something that had been very important to me suddenly isn’t, I can take
the math I know and apply it to something else. To wit, the math for reflection and refraction
and surface waves applies equally well to ultrasonic waves as it does to seismic waves. Rayleigh
waves can destroy a structure, as we have discussed, but they can also be important for nonde-
structive evaluation of structures. The math is identical, and as long as we appropriately scale
frequency with some characteristic size, the physical behavior is the same as well. It works for
kilo-Hertz and mega-Hertz frequencies, all the way up to about 2 GHz or so at which point we
will call the measurement scheme acoustic microscopy. The basic idea is that we exploit refraction
beyond the critical angle to deliberately generate Rayleigh waves, which interact with surface fea-
tures in our samples in particular ways that highlight topographical or material discontinuities of
interest.

Another reason I don’t get too freaked out about lifequakes is knowing stories like Laszlo Adler,
Taine McDougal Professor Emeritus in the Department of Integrated Systems Engineering at the
Ohio State University. He is known for his work in Ultrasonics, Acousto-optics, and Nondestructive
Evaluation of Materials. He has been active in scientific research for over 60 years, and was a partic-
ipant from the beginning of the nationwide interdisciplinary program Quantitative Nondestructive
Evaluation - QNDE. Adler had just started elementary school when Nazi Germany invaded Poland
in 1939. He lived with his family in Jewish-hostile Hungary until the German invasion in 1944. In
about three weeks of occupation, he was moved into the Ghetto of Debrecen. A few weeks later,
he was sent to a concentration camp called “the brick factory” and, from there, to a labor camp,
Strasshof, near Vienna. In April 1945, the Germans sent the family to an extermination camp, but
the railway station was bombed by Russian planes, which stopped the deportation. They were lib-
erated a few weeks later by the Russian Army.

4.3 Acoustic Microscopy

Rayleigh waves turn out to be quite useful for very high-frequency inspection of small, near-surface
features in objects. Many people casually throw about the term “acoustic microscopy” using it for
any high-frequency ultrasound inspection method. Here, we’re going to mean something quite spe-
cific. In particular, we’ll refer to a scanning acoustic microscope (SAM) as a pulse-echo ultrasound
system similar to a traditional ultrasound immersion tank, but with a highly-focused lens. The
reason for that will become clear momentarily. A common acoustic microscope lens geometry is
shown in Figure 4.10.

Successful development of the SAM began with the realization that it is not possible to make a
high-resolution acoustic lens that can image more than one point of an object at a time, but it is
possible to make an acoustic lens that has excellent focusing properties on its axis [5]. At moderate
frequencies, the focusing lens is often made from quartz and with single-crystal sapphire lenses, it
is possible to image at frequencies as high as 2 GHz. Rather than a large immersion tank, acoustic
microscopes typically have a small dish of water for coupling or just some water on the surface of
the sample. The very high index of refraction at the lens-water interface allows a single lens to be
used even when the numerical aperture is large. A lens for use at 2 GHz would typically have a
cavity of radius about 40μm. Because the lens has a large opening angle, Rayleigh waves are gen-
erated that travel along the surface of the sample while “leaking” acoustic energy back into the
coupling fluid, as long as the lens is close enough to the surface that the geometric focal point is
beneath the surface, as in Figure 4.10. There is also a direct pulse-echo reflection from the surface,
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Transducer

Sample

Rayleigh

wave

Couplant

(water)

Lens

(quartz)

a b

c

Arbitrary ray
(does not contribute)

Figure 4.10 The transducer is at the top of a delay line with a lens that focuses rays beyond the critical
angle. At very high frequencies, a small amount of water couplant is held between the delay line and the
specimen’s surface by fluid tension. The ray marked a is oblique enough to the specimen surface that
Rayleigh waves are generated, and as they propagate along the surface they leak energy back up into the
lens, as indicated by the ray marked b. In addition, there will be direct rays, marked c, which are
perpendicular to the specimen surface and reflect bulk waves from the surface. Interference between the
reflected bulk waves and the ray paths containing the Rayleigh waves changes as the distance between the
lens and the specimen is changed. If the geometric focus is at the surface, there will be no Rayleigh waves,
but as the lens is defocused to various depths below the surface, the length of the Rayleigh wave path
changes. An arbitrary ray is shown, which reflects from the surface specularly and those reflections refract
back into the lens at angles such that this ray doesn’t contribute to the signal recorded at the transducer.

which interferes with the leaky Rayleigh wave signal, since both are recorded by the transducer
at the back end of the lens/delay line. By changing the defocus distance, z, the amount of con-
structive or deconstructive interference between the bulk wave and the leaky Rayleigh wave can
be controlled.

Consider the relatively simple case of oblique plane waves in water incident upon a elastic (solid)
half-space, for example, a block of aluminum. At small angles of incidence, that is, close to perpen-
dicular, a refracted longitudinal wave enters the solid, as expected, and of course there’s also a
refracted transverse wave in the solid, but close to normal incidence that mode-converted wave is
pretty weak. As the angle of incidence gets to 13.56∘, something odd happens. The refracted lon-
gitudinal wave disappears. When the angle of incidence gets to 29.2∘ the transmitted transverse
wave disappears as well. If the elastic half-space was PMMA or fused silica, the same thing would
happen, except that the two critical angles would be different.

In order to understand what’s happening at the critical angles, let’s look in detail at the mathe-
matics of this reflection–refraction problem. We’ll make the interface the plane z = 0 and assume
without loss of generality that the xz-plane is the plane of the incident, reflected, and transmitted
waves. There’s no variation in y so the problem is 2D. In the fluid we have incident and reflected
longitudinal waves while in the solid, we have transmitted longitudinal and transverse waves.
The z-component of the four-wave vectors is denoted by 𝛼, with the appropriate subscript. The
x-component of all the waves is the same, by Snell’s law, and is denoted by 𝛽.

We thus write

𝜙0 = 𝜙iei𝛼0z + 𝜙re−i𝛼0z (𝛼0 = 𝛼i = −𝛼r) (4.50)

for z ≥ 0 and

𝜙1 = 𝜙lei𝛼lz 𝜓1 = 𝜓sei𝛼sz (4.51)
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where the total displacement field is

u⃗ = ∇𝜙 = ∇ × 𝜓⃗ (4.52)

and we have suppressed the common factor of ei(𝛽x−𝜔t). Boundary conditions at the liquid–solid
interface are

1) Balance of normal stress and pressure
2) Vanishing shear stress in fluid
3) Continuity of normal surface displacement

In the fluid at z = 0, we have

uz = i𝛼0𝜙i + i𝛼0𝜙r

𝜎zz = −Bk2
0(𝜙i + 𝜙r) (4.53)

𝜎xz = 0

where B is modulus. In the solid at z = 0 we have

uz = i𝛼l𝜙l − i𝛽𝜓s

𝜎zz = −2C44
(
𝛼

2
l 𝜓l − 𝛼s𝜓s

)
−
(

C11 − C44
)

k2
l 𝜙l

= −2C44
[(
𝛽

2 − 𝛼2
s
)
𝜓l − 2𝛼s𝛽𝜓s

]
(4.54)

𝜎xz = C44
[
−2𝛼l𝛽𝜙l −

(
𝛽

2
𝛼

2
s
)
𝜓s
]

Next we substitute

𝜌0𝜔
2∕k2

0 = B 𝜌1𝜔
2∕k2

s = C44

p ≡

(
𝛽

2 − 1
2

k2
s

)
∕𝛽 = (𝛽2 − 𝛼2

s )∕2𝛽

Putting everything together, canceling 𝜔2, and using the third BC equation in the first gives

𝛼0(𝜙i − 𝜓r) − (𝛼l𝜙l − 𝛽𝜓s) = 𝛼0(𝜙i − 𝜙r) − (k2
s∕2𝛽)𝜓s = 0 (4.55)

𝜌0(𝜙i + 𝜙r) +
𝜌l

k2
s

[
(𝛽2 − 𝛼2

s )𝜙l + 2𝛼s𝛽𝜓s
]
= 𝜌0(𝜙i + 𝜙r) +

2𝜌l𝛽

k2
s
(p𝜙l + 𝛼s𝜓s) = 0 (4.56)

Writing the reflection coefficient as R = 𝜙r∕𝜙i and the two stress amplitude transmission coeffi-
cients as Tl = (𝜌1∕𝜌0)𝜙l∕𝜙i and Ts = (𝜌1∕𝜌0)𝜓s∕𝜙i, we find

R =
4𝛼0𝛽

2(𝛼l𝛼s + p2)𝜌1∕𝜌0 − 𝛼lk4
s

4𝛼0𝛽
2(𝛼l𝛼s + p2)𝜌1∕𝜌0 + 𝛼lk4

s

Tl =
−4𝛼0p𝛽k2

l

4𝛼0𝛽
2(𝛼l𝛼s + p2)𝜌1∕𝜌0 + 𝛼lk4

s
(4.57)

Ts =
𝛼1

p
Tl

If we recall Snell’s law 𝛽 = k sin 𝜃 = k1 sin 𝜃1 = ks sin 𝜃s, we have 𝛼0 = k cos 𝜃 𝛼1 = k1 cos 𝜃1
𝛼s = ks cos 𝜃s, where we have used

p = −ks
cos 2𝜃s

2 sin 𝜃s
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We can define impedances as:

Z =
𝜌0c0

cos 𝜃
Z1 =

𝜌1c1

cos 𝜃1
Zs =

𝜌scs

cos 𝜃s
(4.58)

and we then have

R(𝜃) =
Zlcos22𝜃s + Zssin22𝜃s − Z
Zlcos22𝜃s + Zssin22𝜃s + Z

Tl(𝜃) =
2Zl cos 2𝜃s

Zlcos22𝜃s + Zssin22𝜃s + Z
(4.59)

Ts(𝜃) =
−2Zl sin 2𝜃s

Zlcos22𝜃s + Zssin22𝜃s + Z

If we define Ztot = Zlcos2
𝜃s + Zssin22𝜃s, we have the familiar form

R(𝜃) =
Ztot − Z
Ztot + Z

(4.60)

4.3.1 V (z) Curves

Contrast in acoustic microscopy varies very sensitively with the distance between the lens and
the surface of the specimen. The first, and strongest, effect is that the signal is greatest when the
specimen is at the focus of the lens. The second effect is more subtle. The contrast varies as the
specimen is moved away from focus. It doesn’t change monotonically, but can undergo a series of
oscillations. There can even be contrast reversal as the “defocus” is changed.

In the V(z) curve sketched in Figure 4.11, V is the signal intensity and z is the amount by which
the specimen surface is displaced from the focal plane of the lens. Note that getting closer to the
surface is “negative defocus” and that is where the most interesting phenomena occur because of
the interplay of the bulk and surface waves.

Exercise 4.7 Verify the above algebra starting from first principles. Implement the final formula
and make some interesting plots of R(𝜃) etc.

Note that at the critical angle, the reflection coefficient is unity, which means that all of the
energy is reflected. Also note that up to the critical angle the phase of the reflection coefficient
is zero, indicating that R is real. Beyond the critical angle, the phase is nonzero and the reflection
coefficient is complex, which indicates the presence of surface waves. When there’s a second critical
angle, beyond which |R| is unity, so there can be no excitation of longitudinal or shear waves away
from the surface, there can be excitation of waves that decay exponentially into the bulk. This turns
out to be the leaky Rayleigh wave that we care about in acoustic microscopy.

Consider again the diagram of an acoustic microscope transducer/lens, Figure 4.10. As we have
discussed, in the ray model of an acoustic microscope lens, only two rays are of interest. Arbitrary
rays are reflected specularly from the specimen and pass back through the lens with an inappro-
priate angle to contribute significantly to the excitation of the transducer. The axial ray c represents
bulk waves, which reflect at normal incidence from the specimen. For normal incidence we have,
as usual,

R =
Z − Z0

Z + Z0
(4.61)
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Figure 4.11 The left lens at top is defocused by an amount d as indicated by the dashed lines. The right
lens is focused at the surface of the specimen so it will not generate Rayleigh waves. Bottom is a sketch of a
V (z) curve, with the vertical axis voltage and the horizontal axis defocus. The largest signal is at zero
defocus, that is, when the geometric focus is at the surface. Note that as the defocus increases (to the left of
0 on the z∕𝜆0-axis) the geometric focus is beneath the surface so there is constructive and destructive
interference between the reflected L wave and the signal that includes the Rayleigh wave. Because the
Rayleigh wave velocity and critical angle depend on material, the spacing of the peaks and nulls in the V (z)
curve depends on material. Topography also affects the V (z) curve because changes in topography are
effective changes in defocus. As an acoustic microscope lens is raster-scanned across a sample, small
changes in material or topography can give a reversal of contrast, for example, going from peak to adjacent
null in the V (z) response. Abrupt changes in topography, materials, cracks, etc. will reflect, refract and/or
diffract the Rayleigh waves. This combination of effects, along with potentially very high frequencies, is
what gives acoustic microscopy such excellent sensitivity to small features of interest.

where Z0 = 𝜌
𝑤aterc

𝑤ater and Z = 𝜌solidcsolid, so this ray is sensitive to the material properties of the
specimen, as well as to the surface topography as the time delay of the reflection is recorded.

The other important ray a is incident upon the specimen at the Rayleigh angle 𝜃r ≡ sin−1(𝑣0∕𝑣r)
and excites a surface wave in the specimen. The surface wave leaks energy (radiates a wave at 𝜃R)
back into the fluid as it propagates. Because the “leaked” energy is a wave at the Rayleigh angle, it
contributes to the signal measured by the transducer (b).

Both the axial ray and the Rayleigh ray contribute to the signal at the transducer. Although they
are incident at different places on the transducer, the piezoelectric voltages they excite are summed
(with respect to amplitude and phase) so that their complex-valued sum is detected, and therefore
interference effects between them are observed.

As z changes, the phases of the two rays change at different rates so the combined effect alternates
between constructive and destructive interference, viz the V(z) curve.
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The phase of the geometrically reflected normal ray is 𝜙G = −2kz. Here k is the wavenumber in
the fluid. The phase 𝜙R of the Rayleigh ray is a little more complicated. We write

𝜙R = −2(k sec 𝜃R − kR tan 𝜃R)Z − 𝜋

= −2kz

(
1 − sin2

𝜃R

cos 𝜃R

)
− 𝜋 (4.62)

since by Snell’s law kR = k sin 𝜃R. Trig identities allow us to simplify this to

𝜙R = −2kz cos 𝜃R − 𝜋 (z < 0) (4.63)

If the output of the transducer is detected by a phase-insensitive circuit – as is usual – then we care
about

𝜙G − 𝜙R = −2kz(1 − cos𝜙R) + 𝜋 (4.64)

As the specimen is moved toward the lens, the two rays will alternate between being in phase and
out of phase. The period of the resulting oscillations in V(z) is the movement in the z-direction
needed for a change of 2𝜋 in the relative phase

Δz = 2𝜋
2k(1 − cos 𝜃R)

(4.65)

Expressed in terms of the wavelength in water this gives

Δz =
𝜆0

2(1 − cos 𝜃R)
(4.66)

where sin 𝜃R = c0∕cR.

Exercise 4.8 Go back through this derivation to understand the details. By an analogous
derivation, show that the change in the total attenuation suffered by the Rayleigh ray is
Δ𝛼 = 2z(𝛼0 sec 𝜃R − 𝛼R tan 𝜃R).

In the late 1990s, I had a postdoc who had done acoustic microscopy for her doctoral work
and, although her project with me was primarily Lamb waves, I was happy to have her do some
acoustic microscopy as well. The basic components necessary to do acoustic microscopy are: (i) a
high-precision xyz-scanner (check), (ii) a fast-enough A/D board to capture very high-frequency
signals (check), and (iii) a high-frequency, highly-focused transducer/lens. I told her to spec out
the transducer/lens she wanted at 100 MHz because that would make use of our existing scanner
and electronics, and we placed the order. The custom transducer/lens was expensive, but that’s
only a problem if you don’t specify carefully enough the opening angle and it then won’t gener-
ate the Rayleigh waves needed to do acoustic microscopy. Remember, without the Rayleigh waves
at defocus you’re not doing acoustic microscopy you’re just doing very high-frequency pulse-echo
ultrasound. Oops.

This was actually our fallback position. At NASA Langley near us was one of the handful of
2 GHz SAMs in the world (www.ksisam.com) and our friends and collaborators there didn’t have
any existing expertise to make good use of it because they had been through a significant reduction
in force a few years prior. I volunteered to have my postdoc come there and put it to good use, but
we were told no. “She might break it,” we were told. “She’s quite expert at this particular make and
model,” we responded. “What if she damages the 2 GHz transducer/lens?” we were asked. “What
if we buy one of those and put in on the shelf in case it’s needed?” was our offer. We eventually
concluded that the civil servant in charge of that apparatus didn’t actually know how to use it since

www.ksisam.com
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the contractor who had been operating it was let go in the recent budget cuts. He seemed to be
concerned that if someone who really knew how to use it came there and used it that would make
it obvious that he didn’t know how to use it, which is so basic. We let the issue drop, but it kind of
stuck in our craw because the other owners of similar ELSAMs all seemed quite lonely and were
eager to have someone come there and collaborate. I got the sense that acoustic microscopy was a
dormant field in those days, a cool niche technology but without a killer application.

In the intervening years, the electronics necessary to digitize 2 GHz signals has become widely
available and quite inexpensive, which means that acoustic microscopy is a technique that’s worth
reconsidering. From our perspective, the currently open technical questions are no longer hard-
ware. It’s scattering. In particular, the key technical challenge now is understanding and model-
ing/simulating the interaction of Rayleigh waves with near-surface flaws such as cracks. The ray
model of acoustic microscopy that we’ve just been doing won’t work for that, so we’re going to have
to plow ahead with a wave model. Fair warning, it’s mathematically a bit extra.

I’m following Andrew Briggs,3 who developed the application of acoustic microscopy to image
and measure the elastic structure of a wide range of materials, developing the theory to explain how
cracks and other defects give rise to surface wave contrast. His excellent 1992 monograph “Acoustic
Microscopy” remains in print, with a new chapter on acoustically excited probe microscopy in the
second edition [5]. There aren’t many other books on the subject except [6] which I take as an
indication that it’s still a niche subject.

4.3.2 Wave Model of Acoustic Microscopy

Now consider the same transducer/lens/specimen geometry, but with wave theory instead of rays.

● The waves radiated by the transducer are refracted by the lens to form a spherical wavefront
centered on the focal point of the lens.

● Each point on the wavefront can be described by its angular coordinates from the focus (𝜃, 𝜙).

Thus, the spherical wave emerging from the lens can be described by a function L1(𝜃, 𝜙). The
wave is reflected from the specimen surface according to R(𝜃, 𝜙). The reflected wave returns
through the lens to the transducer, where it is detected with a sensitivity L2(𝜃, 𝜙). The total signal
at focus is therefore

V =
∫

𝜋∕2

0 ∫

𝜋

−𝜋
L1(𝜃, 𝜙)R(𝜃, 𝜙)L2(𝜃, 𝜙) sin 𝜃d𝜙d𝜃 (z = 0) (4.67)

Since L1 and L2 depend on geometry it is convenient to define a pupil function

P(𝜃, 𝜙) = L1(𝜃, 𝜙)L2(𝜃, 𝜙)∕ cos 𝜃

to get

V =
∫

𝜋∕2

0 ∫

𝜋

−𝜋
P(𝜃, 𝜙)R(𝜃, 𝜙) sin 𝜃 cos 𝜃d𝜙d𝜃 (z = 0) (4.68)

3 Andrew Briggs is the inaugural holder of the Chair of Nanomaterials at Oxford. “His research interests focus on
materials and techniques for quantum technologies and their incorporation into practical devices. Current hot
topics include vibrational states of nanotubes and charge transport through single molecules in graphene nanogaps,
and machine learning for measuring and tuning quantum devices. He has more than 650 publications, with over
28,000 citations.” (https://andrewbriggs.org).

https://andrewbriggs.org
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If the specimen is isotropic and the lens has axial symmetry then the𝜙 integration may be absorbed
in P. We then get

V =
∫

𝜋∕2

0
P(𝜃)R(𝜃) sin 𝜃 cos 𝜃d𝜃 (z = 0) (4.69)

If the specimen is moved away from the focal position, then there will be a phase shift that depends
on 𝜃. If the wavenumber in the coupling medium is k = 2𝜋∕𝜆0 then the z component of the wavevec-
tor is kz = k cos 𝜃. Defocusing the specimen by an amount z causes a phase delay of 2zkz or 2kz cos 𝜃.
Expressing this phase delay as the complex exponential of a phase angle gives

V(z) =
∫

𝜋∕2

0
P(𝜃)R(𝜃)e−2izk cos 𝜃 sin 𝜃 cos 𝜃d𝜃 (4.70)

The hard part in this calculation is the pupil function. (You did R(𝜃) as an exercise recently.) How-
ever, since it’s a function of the lens you’re using, it’s a matter of finding it once. Of course, P(𝜃)
might be something that’s supplied by the lens manufacturer.

Exercise 4.9 How would you simulate or measure P(𝜃)? For a spherical lens it would be 2D
axi-symmetric. Line-focus (cylindrical) lenses could be considered 2D, of course.

So, the ray model gives us a useful account of what’s going on when Rayleigh waves dominate
the contrast, but even with the additional complexity of the wave model, all we’ve really got so far
is a way to measure material property variations and topography as we scan across a surface. That
begs the obvious question: What about defects? This is a book about scattering.

One sort of defect that acoustic microscopes are quite good at finding are surface-breaking cracks.
Finding them can be made a bit easier by using a cylindrical lens instead of a spherical one because
it’s the Rayleigh waves that hit the crack broadside which are going to interact with it most strongly.
Scans will have to be a bit more complex using a cylindrical lens, of course, but then it’s not like
we’d be doing the measurement by hand anyway. The scanning in SAM means we set it up and
press go. About the most we have to do while the SAM is scanning is keeping one eye on it to make
sure that the measurement is progressing as expected. It’s all motorized and automatic; we don’t
even have to pedal it. Of course, we do have to have a scanning system that can both move in the xyz
directions and rotate 180∘, and do it all very precisely if we’re going to use very high frequencies.

Real cracks won’t be straight and there’s no particular reason to expect them to be perpendicu-
lar to the surface, but let’s consider the simplest 2D cases for now. Because the Rayleigh wave will
reflect from the crack, we’ll get an interference pattern related to the distance the crack is from the
focal line of the cylindrical lens. SAM images often have “Rayleigh fringes” which are the hallmark
of such cracks. Instead of simply considering V(z) as before, we now need the much more compli-
cated V(x, z). We define a Fourier domain scattering function S(kx, k′

x), which describes how the
waves incident on a 2D crack at normal incidence are scattered. The prime refers to the incident
wave and the unprime to the scattered wave. We write

V(x, z) =
∫

k′

−k′ ∫

k

−k
ei(k′

z−kz)zL1(k′
x)L2(kx)S(kx, k′

x)ei(k′
x−kx)xdkxdk′

x (4.71)

In this, L1(k′
x) and L2(kx) are the lens functions for outgoing and incoming waves, and the crack is

taken to be at the origin. The first term in the integrand allows for phase shifts due to defocus, and
the last term allows for phase shifts due to lateral displacement of the lens from directly over the
crack.
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If we grind through the Fourier transforms (and other details that I typed out and then deleted
because you really should get yourself a copy of Brigg’s book anyway) and put the geometric term
back in (it’s unaffected by the crack) we have

S(kx, k′
x) =

[
R0(kx) +

i4𝛼Rkp

k2
x − k2

p

]
𝛿(kx − k′

x) +
2𝛼R

𝜋

[
(TR − RR − 1)kxk′

x + (TR + RR − 1)k2
p

(k2
x − k2

p)(k′2
x − k2

p)

]
(4.72)

where 𝛼R describes the attenuation of the Rayleigh wave due to radiation (leaking) into the fluid.
Note carefully the assumptions explicit in this derivation:

● Rayleigh wave scattering dominates the contrast.
● The fluid loading is light.
● The effect of the crack on the geometrical reflection can be neglected.

Also note that we haven’t yet done the hard part of the scattering problem since we’ve simply
used the symbols RR and TR for the 2D Rayleigh wave reflection and transmission coefficients of
the crack. Because the energy of the Rayleigh wave falls off exponentially with depth, it’s pretty
obvious that crack depth is going to have to show up in the reflection and transmission coefficients.
At this stage, it’s pretty much anybody’s guess what else about the crack might matter in calculating
how a Rayleigh wave scatters from it. Don’t be too disappointed if that turns out to be something
that we’re forced to address numerically.

We can consider two joined quarter spaces using the same equations, except that S(kx, k′
x) is now

the delightful expression

S(kx, k′
x) = R0(kx)𝛿(kx − k′

x) + 2i𝛿(kx − k′
x)

[
𝛼1kp1

k2
x − k2

p1

+
𝛼2kp2

k2
x − k2

p2

]

+ 1
2𝜋

{
2
√
𝛼1𝛼2

[
TR2

(kx + kp1
)(k′

x + k2
p2
)
+

TR1

(kx + kp2
)(k′

x + k2
p1
)

]

−
2𝛼1

kx + kp1

[
1

k′
x + kp1

+
RR1

k′
x − kp1

]
−

2𝛼2
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1
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+
RR2

k′
x + kp2

]
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𝛼1kp1
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p2
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(4.73)

where TR1
,TR2

and RR1
,RR2

are the transmission and reflection coefficients incident from sides 1
and 2, respectively. Again, the reflection and transmission coefficients are the missing pieces.

Forgetting about the fluid loading for the moment, let’s consider the simplest possible 2D
Rayleigh wave scattering problems. Although we may be inclinded to set up the quarterspace
problem in terms of reflection and refraction of Rayleigh waves alone, it turns out that the actual
situation is rather a lot more complex, as sketched in Figure 4.12. When the surface waves interact
with even quite simple features, reflected and transmitted Rayleigh waves will be generated, of
course, but bulk waves will also be generated due to mode conversion. What sort and how much
mode conversion happens depends on the details of the feature. Whether they matter for acoustic
microscopy is a whole other question. Oh, and that was for the simplest possible 2D case. If either
the wave field or the crack (or both) aren’t fully 2D then we’ll have to talk about the scattering
pattern of the Rayleigh waves on the surface as well as the 3D bulk waves, which are scattering in
an even more complex pattern down into the bulk of the sample. If the sample is thick enough, the
bulk waves might just “go away” but if the sample is thin or there are any near-surface scattering
features then there could easily be bulk wave reflections that make their way back up through the
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Figure 4.12 Rayleigh waves incident on the end of a
quarterspace will reflect both Rayleigh and bulk
waves, in addition to “transmitting” Rayleigh waves
down the edge. It’s not as simple as assuming some
form for these wave modes and then applying the
boundary conditions. The good news is that this is a
rather simple geometry to simulate with EFIT.

coupling fluid and into our microscope lens. It’s frightfully/delightfully complicated, depending
on your perspective.

4.3.3 Detecting Cracks in Teeth

Once upon a time a sailor in a ballistic missile submarine had a toothache. A bad one. So bad that
he couldn’t be treated on the boat and they had to surface so he could be taken off by a helicopter
for treatment at a hospital on shore. It was probably a bit more than a toothache. Whatever, but
this incident prompted the Navy to conclude that better ways to screen all the sailors for potential
dental issues prior to each six-month deployment were mission critical. I don’t know quite why,
but Cmdr Charlie Richardson of the Naval Dental School contacted Dr. Joseph Heyman4 at the
Nondestructive Evaluation Sciences Branch at the NASA Langley Research Center to see if any of
the techniques NASA was developing for aircraft structural health monitoring could be adapted to
monitoring dental health. Cmdr Richardson provided dental expertise, and also periodically fished
around in his head vat to find samples that might be interesting for NASA to scan. Fortunately,
there was a fearless gadgeteer at NESB, named John Companion, who wasn’t grossed out at all.
He happily scanned whatever samples the Navy provided, and patented a notional technique to
use diagnostic ultrasound pulse-echo measurements to painlessly diagnose periodontal disease. It
turns out that the reason you really should floss more often is that if left undisturbed, the naturally
occurring bacterial plaque attacks the ligaments that hold your teeth in place. It’s the crest of the
periodontal ligament that dental hygienists imagine they’re measuring when they poke you with

4 Dr. Joseph Heyman retired as NASA Langley Research Center’s Senior Technologist in 2001. Joe was Director of
Langley’s Commercialization Program Office for five years, after founding and building the Nondestructive
Evaluation Sciences Branch to a staff of 80 researchers over a span of more than 13 years. He joined Nascent
Technology Solutions in 2001, which was acquired by Luna Innovations and operated as their Hampton, Virginia
location. Joe was the Luna Chief Scientific Officer through their IPO, leading a variety of technology development
and commercialization efforts funded primarily via the SBIR/STTR program.

Joe holds a BA from Northeastern and MA and PhD from Washington University, with concentrations in physics
and ultrasonics. He has been an adjunct professor of physics and applied science at William and Mary since 1979,
and founded the NDE program there. He holds 26 US Patents and has authored over 100 scientific publications and
presentations. Among his numerous honors include being the first person to win 4 IR&D 100 Awards Blood
Microemboli Monitor, Ultrasonic Bolt Monitor, Acoustic Power Detector, Geodynamic Stress Monitor. He’s also in
NASA Langley’s Hall of Fame: https://news.northeastern.edu/2023/04/28/magazine/nasa-hall-of-honor-
northeastern-coop.

Joe convinced me to come to Williamsburg in 1993 and take over the NDE graduate program at W&M. His branch
continued to fund a number of research scientists through W&M and we charged NASA the off-campus overhead
rate because they worked at LaRC, which allowed the savings to be used to fund several graduate students to do
their dissertation research on problems of interest to NASA’s mission. When Joe retired from NASA, I convinced
him to join a startup near NASA that I had been shepherding in the development and commercialization of NDE
technologies.

https://news.northeastern.edu/2023/04/28/magazine/nasa-hall-of-honor-northeastern-coop
https://news.northeastern.edu/2023/04/28/magazine/nasa-hall-of-honor-northeastern-coop


4.3 Acoustic Microscopy 119

that probe before exhorting you to do a better job of flossing regularly before leaving you in the chair
to contemplate your life choices while you wait for the dentist to drop by briefly, mispronounce your
name, and then look under your tongue for a tumor or whatever.

The particular room at NESB, where John Companion was scanning cadaver jaws in one corner,
also happened to be where some of my PhD students and one of my research scientists worked
most days. I was only kind of aware of what John was doing though, until NASA LaRC reorganized
and NESB got moved from Instrument Division to Materials Division. Dr. Heyman got promoted
from the NESB Branch Chief to Deputy of Technology Transfer during that reorganization, which
took him out of the chain of command. Normally that wouldn’t be a problem, except that the new
Materials Division Head, Charlie Harris, was Joe’s frenemy and he promptly said something to the
effect of, “Get this dental stuff out of my division. We do aerospace materials.” I got a call from my
colleagues at NASA asking me if I would be willing to take on the dental ultrasound project. They
would provide funding for John (and me and a graduate student) and would transfer to the College
all of John’s equipment, materials, and supplies. I immediately agreed. It was two pickup-trucks
worth of stuff, including a small wooden box with a human skull in it. NASA was very interested
in highlighting non-aerospace Spinoff technologies.5

So that’s how I ended up being a leading expert in dental ultrasonography [7]. It’s a much harder
problem than you might think because it’s not an imaging application of medical ultrasound.
Instead, the individual A-lines need to be interpreted, automatically and in real time, to identify
the distance from the gum line to the crest of the periodontal ligament. At three places on each side
of each tooth. In addition, the equipment needs to be foot-pedal operated and inexpensive enough
that it can compete with that simple metal probe that the hygienist pokes you with repeatedly
every year or so. We worked with both startups and giant dental companies, and got very close
to commercializing the technology, except that our clinical partners never seemed to be able to
come through with the patients needed to provide training data for machine learning. If you don’t
have sufficient training data, your machine learning system isn’t learning, it’s just memorizing
your training data. I get kind of tired of trying to tell people that. Oh, and since the periodontal
ligament, gums, etc. are all soft tissue, it makes no sense to do tests on cadaver jaws because the
ultrasonic properties are totally different.

Another problem that diagnostic ultrasound can be useful for in the dental office is detecting
cracks [8]. If you foolishly ate Captain Crunch cereal as a bedtime snack when you were a kid in
the 1970s, you probably have large fillings in several of your molars and now that you’re in your
(late) 50s, those teeth are in some danger of cracking. X-rays do a terrible job of detecting cracks, but
diagnostic ultrasound detects cracks quite easily. Acoustic microscopy can detect very, very small
cracks because the surface waves scatter from even superficial cracks. The question we faced was
whether acoustic microscopy could be implemented in the dental office to detect cracks in teeth.
We came up with a potential solution, happily knowing that we could develop the method in the
laboratory on extracted teeth, and then subsequently demonstrating clinical viability with human
patients in the dental office.

As you’re well aware, acoustic microscopy uses a lens with an opening angle that’s greater than
the critical angle to launch Rayleigh waves, which are then leaked back into the coupling fluid
and picked up by the other side of the lens. Our idea was to turn the lens inside out, so that
Rayleigh waves travel away from the lens in both directions. We demonstrated this in the labora-
tory by machining a triangular delay line as shown in Figure 4.13. We showed that in flat samples,
the surface waves traveling to the left and the right away from the transducer were reflected from

5 See https://spinoff.nasa.gov/Spinoff2008/pdf/spinoff2008.pdf, pp. 60–61.

https://spinoff.nasa.gov/Spinoff2008/pdf/spinoff2008.pdf
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Figure 4.13 The transducer generates longitudinal waves in the delay line, which will refract across the
tapered boundary and be coupled to the tooth surface by the compliant gel boot, so as to generate
circumferential surface waves in the tooth enamel.

the left and right edges of the sample, respectively, and those reflections were picked up as leaky
Rayleigh waves by the transducer. Since Rayleigh waves follow the curvature of a surface, we were
able to generate counterpropagating circumferential surface waves that can ring all the way around
a cylindrical sample and be recorded by the other side of the transducer. The concept is illustrated
in Figure 4.13 where a compliant boot is used to contain couplant so that a handpiece can be used
to make the measurement in teeth in a clinical setting. The circumferential Rayleigh waves will
interact with any cracks in the tooth, even if the cracks are between the teeth, and time delay of the
crack signals will indicate where the flaw is located.

We thought this was a clever adaptation of acoustic microscopy concepts to solve an important
clinical need in dentistry, and we had done enough preliminary (phantom) experiments in the lab-
oratory to be confident of the way forward. Two things happened, which were each horrifying in
their own way but bear relating because it’s important to understand that having a clever idea is
only one part of developing new technologies. The first thing that happened was with an NIH pro-
posal we wrote for ultrasound detection of cracks in teeth. It was a beautiful proposal and we had
worked on it for almost a year. We were just ready to submit it via the normal mechanism when
the 2009 Stimulus funding flooded the system, and so we added some additional work to the plan
in order to fit the million-dollar budget cap of those Challenge Grants. You may recall that there
was nearly a trillion dollars in play and our project was, to use the phrase of the day, Shovel Ready.
I review quite a lot of proposals for both NIH and NSF, and during that flood of money through
the system I reviewed way more than usual. All the experienced reviewers were overloaded, so
they seem to have had to call on quite a lot of n00bs in order to process all the proposals swamp-
ing the system. Our proposal went to a n00b who got the scoring system backward and meant
to rate it highly but gave it high numbers when lower numbers are better. I recall a blast email
that went out to all reviewers reminding everybody that at NIH, low numbers are good and high
numbers are bad, and thought to myself, “Who would be dumb enough to get the scoring system
backward?” Also because of the flood of proposals in the system, the usual error correction mech-
anisms like panel discussions weren’t used that cycle and so a single high score got our proposal
streamlined.

The second thing that happened was with a patent application which my technology transfer
office submitted (US20120040312A1). Patent examiners know how to google, and the first thing
they always do is google a few terms and then generate a preliminary office action based on what
they find. There’s typically a back-and-forth, which is how patent agents generate billable hours and
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patent examiners demonstrate they’re working. If there is prior art in the public domain, typically
via a publication, that means the concept isn’t patentable. Research proposals don’t count because
they are confidential and only used for review purposes, unless one of your sponsors posts your
student’s excellent fellowship proposal to the open internet as an example of a proposal for other
students to see. The patent examiner will find that via Google and will deny the patent based on that.
A nonlazy, noninept technology transfer director would respond to that office action appropriately.
Mine didn’t. I’m still a little salty about it.

4.3.4 Inspection of V22 Hydraulic Lines

I have one more related story. For tube inspection, this same acoustic microscopy scheme can be
employed because the guided surface waves follow the curvature of the inner surface of the tube.
Even for regions of the tube containing bends, the surface waves follow the compound curvature of
the inner surface just as easily as they do any flat surface. Of course, it’s more difficult to envision (or
draw) the ray paths, but as long as the lens has an opening angle large enough to reach the Rayleigh
critical angle for all orientations then the important interference effects discussed above are still
present. For small tubes, the primary difficulty lies with making the transducer/delay line/lens sys-
tem small enough to both fit and fish around corners. Fortunately, we had developed expertise at
building small endoscopic scanning probes for urology applications. In this project, we proposed to
design and fabricate such an endoscopic acoustic microscopy probe for detecting small cracks in Ti
tubing. We envisioned the transducer being placed axially with the ray path bent 90∘ via reflection.
In one implementation, shown conceptually in Figure 4.14, the transducer (dark gray) is attached
to a solid delay line which has a triangular section that bends the ultrasonic beam 90∘ before the
curved lens section projects a focused ultrasound beam at the inner surface of the tube. An alter-
native implementation uses the same geometry, but instead of a solid delay line to turn and focus
the beam, it uses a curved reflector. In our previous urological work, we have found this scheme
particularly useful for the very small probes used for scanning the prostate from inside the urethra.
We built a number of these probes with diameters less than 3 mm using ultrasonic frequencies
of 10 MHz. The probes have long and flexible drive shafts in order to accommodate the bend just
prior to entering the prostate. For the Ti tubes, we expected to use somewhat higher frequencies
and larger transducers, although a primary goal was to optimize these ultrasonic parameters for
best sensitivity to the crack sizes of interest.

Kind of a neat concept, and my friends (from graduate school) and I wrote up an SBIR proposal
describing it, in response to a call for inspecting hydraulic lines on the V22 Tiltrotor. As the univer-
sity subcontractor, I provided my input ahead of time because the small-business prime does the
submission. We got everything ready to go the day before. Everything was uploaded and ready to
submit, but my colleague wanted to read everything over once more in the morning and then click
submit well before the five o’clock deadline. Brahm called me mid-morning to tell me that he just
realized that the deadline was 5 am, not 5 pm. They had changed the deadline in order to prevent
the system from crashing when everybody clicked submit just before five. I’ve known Brahm6 since

6 Dr. Brahm Rhodes is General Partner and co-founder of Malaika Ventures. He invests in early-stage climate tech
startups through a climate justice lens to enable a just transition and open the door to a sustainable future for
everyone. Founders can apply at: https://www.malaikaventures.com/startup-application although I assume the
deadlines are firm. Dr. Rhodes is also a Fellow in On Deck Founders (ODF8) and On Deck Angels (ODA4),
exploring responsible AI/ML and building entrepreneurial ecosystems in underserved communities. After earning a
PhD in Engineering at Boston University, Dr. Rhodes did a postdoc in the Radiology Department at Harvard
Medical School focusing on high-performance computing.

https://www.malaikaventures.com/startup-application
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Figure 4.14 A right-angle delay line with a curved opening allows acoustic microscopy to be done on the
inner surface of metal tubing. Ultrasonic ray paths shown by arrows in top, front, and side views. The solid
mirror/lens both turns the rays and then focuses them sharply enough to generate the Rayleigh waves
(wiggly line) that propagate along the inner surface of the tube.

we shared an office in graduate school. Back in the day, he figured out that you could drive your
proposal to the FedEx office at the airport if you didn’t get it done before the pickup deadline.

I’ve written hundreds of proposals over the years, and have reviewed many thousands. I have
long since come to grips with proposals not being funded because the competition is often quite
fierce. That’s part of what makes it so fun to get proposals funded. You both get money to develop
the solution you envisioned, and you get the satisfaction of winning the brutal competition for that
money. It kind of stings when a colleague you know well or an anonymous reviewer makes a dumb
mistake and your hard work goes in the dumpster. Sometimes it takes some years before you’re
ready to dust things off and try that concept again.
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5

Guided Waves

Guided elastodynamic waves, capable of propagating relatively long distances in plates, pipes, and
shells, are quite useful for structural health monitoring. Their propagation properties depend on
the frequency as well as on the thickness and material properties of the structural components.
Flaws such as disbonds, corrosion, and cracks represent changes in effective thickness and/or
local material properties, and therefore measurement of variations in guided wave propagation
can be used to assess the integrity of these structures. Measurements can be made for a number
of relative positions of small embedded or attached transducers in order to cover large areas with
only a few transducers. The physics is complicated enough that it’s not realistic to expect the NDT
technician to directly interpret guided wave signals, or even to reproducibly set up in-the-field
measurements that hinge on using angle blocks and Snell’s law to select particular wave modes in
order to maximize sensitivity to particular flaw types. Fortunately, data engineering can be used
to automatically extract features from measurements for classification via machine learning. The
unimaginably rapid increase in computational power in embeddable devices in recent years has
made possible this type of sophisticated on-the-fly analyses of complex signals, meaning that the
necessary “artificial intelligence” can now be implemented in compact measurement systems of
the type desired for structural health monitoring. Tiny computerized instruments now contain
ultrasonic and A/D function, as well as sufficient processing and memory/storage to perform all
of the expert system interpretation, functions in real time.

One important characteristic of guided waves is that they can have multiple modes propagat-
ing simultaneously, each with distinctly different dispersion properties. However, most research
on guided waves has used only a single mode due to the inability to robustly and automatically
interpret multimode behavior. Different modes have different wave structures, with the velocities
of the different modes depending on frequency-thickness in characteristic manners. Hence, for a
specific defect present in the structure, such as surface corrosion, some modes may be more sensi-
tive than other modes. In our previous work developing the technique of Lamb wave tomography,
three decades ago we started actively down the road to developing data engineering algorithms that
could interpret multimode guided wave signals. It turns out that we were doing machine learning
before that was even fashionable.

At ultrasonic frequencies, these guided waves are confined to the plate-/shell-/pipe-like structure
itself and so follow its shape and curvature, with sensitivity to material discontinuities at either
surface as well as in the interior. These various guided wave modes are typically referred to as
Lamb waves, a terminology we will tend to use here. Plotted vs. a combined frequency-thickness
parameter in Figure 5.1, the phase and group velocities of the symmetric and anti-symmetric
families of modes are as shown for aluminum plates, although other structural materials have
similar behavior. With the exception of the zeroth-order modes, all Lamb wave modes have a

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.
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Figure 5.1 Dispersion curves for an aluminum plate. Solutions to the Rayleigh–Lamb wave equations are
plotted here for both symmetric (solid lines) and antisymmetric (dashed lines) for both phase and group
velocity.

cutoff frequency-thickness value where their phase and group velocities tend to infinity and zero,
respectively, and hence below that value of frequency-thickness those modes do not propagate.

Characteristic change of group velocity with thickness changes is what makes Lamb waves
so useful for detecting flaws, such as corrosion and disbonds, which represent effective changes
in thickness. Sometimes called plate waves, the antisymmetric modes are flexural, while the
symmetric modes are dilatational.
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A typical Lamb wave signal will have multiple modes, and the parts of the signal that are of
interest may not even be the highest in amplitude so that traditional peak-detection sorts of
approaches will fail rather badly. Angle blocks, comb transducers, etc. can be employed to select
purer modes, or perhaps a wise choice of frequency-thickness product can give easier to interpret
signals. For example, fd = 4 MHz-mm could give a single fast S1 mode with all other modes much
slower. Of course, most researchers simply choose a value below fd = 2 MHz-mm, where all but
the two fundamental modes are cutoff. Some even go much lower in frequency where the A0 mode
is not very significant and the S0 mode is not very dispersive, although that tends to minimize the
most useful aspects of Lamb waves for flaw detection, which is that the different modes each have
different through-thickness displacement profiles. Optimal detection of a particular flaw type
depends on choice of modes with displacement profiles that will interact strongly with it, that is,
scatter from it. Moreover, this scattering interaction will cause mode mixing to occur which can be
exploited to better identify, locate, and size flaws. Lamb wave scattering from flaws is inherently
a three-dimensional process.

There is a large literature on the use of Lamb waves for nondestructive evaluation and structural
health monitoring.1 Mathematically, they were first described by Lamb in 1917 [1] and demon-
strated at ultrasonic frequencies by Worlton in the 1950s [2]. The main mathematical approaches
to the solution of Lamb wave problems together with the most general results and conclusions are
summarized in several well-known treatises on wave propagation theory written by Viktorov [3],
Achenbach [4], Graff [5], Brekhovskikh and Goncharov [6], Rose [7], Auld [8], and others.
A decade or so ago, I did a Lamb wave “state-of-the-art” literature review for a multinational
passenger aircraft manufacturing company, which ran to more than 650 entries. A popular area
of applied research, there are 100s of papers published worldwide each year. A more manageable
Lamb wave literature review can be found in [9], which focuses on methods to identify and exploit
signal features of interest for machine learning.

5.1 Guided Waves in Plates

For homogeneous, isotropic solids, SH-waves are not coupled to L- and SV -waves during reflection
from a stress-free plane. That makes a half-space rather uninteresting because the angle of reflec-
tion is equal to the angle of incidence and that’s about it, but if we instead consider an infinite plate
of finite thickness some interesting effects do show up. Let’s consider a plate of thickness 2b so that
the planes y = ±b are the top and bottom stress-free surfaces, as shown in Figure 5.2.

1 Joseph L. Rose began his academic career at Drexel University as an assistant professor in 1970, after earning
master’s and doctorate degrees in Applied Mechanics there. In 1988, he was named Albert and Harriet Soffa
Professor in Mechanical Engineering, a position he held for three years. While at Drexel, he advised 20 doctoral
students. Rose also worked in industry for several years at Hale Fire Pump (known today as Hale Products) and SKF
Group. He then moved to Penn State where, during 27 years, he was the principal adviser to 40 doctoral students
and more than 60 master’s students, retiring in 2019. Prof. Rose taught a class titled Business Opportunities in
Engineering, where he alerted students to the many entrepreneurship and intrapreneurship paths to success. One of
his most famous quotations for both engineering and business students that he’s to be remembered for is “Failure is
on the path to success. If you’ve never failed, it means that you are not doing anything.” He holds 30 patents, has
authored five text books and published more than 600 articles on such topics as ultrasonic NDE, wave mechanics,
medical ultrasound, adhesive bonding, pipe and tubing inspection, bridge and rail inspection, composite material
inspection, ice detection, structural health monitoring, signal processing, and pattern recognition. His publication
work has received more than 18,000 citations.
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x

Figure 5.2 Plate of thickness y = ±b with
propagation in the x-direction.

For SH-waves, the governing equation is

∇2uz =
1
c2

T

𝜕
2uz

𝜕t2 (5.1)

where uz = uz(x, y, t) and c2
T = 𝜇∕𝜌 is the shear wave speed. We’ll consider solutions given by

uz = h(y)ei(𝜉x−𝜔t) (5.2)

so that we are sure to be modeling waves that are propagating in the x-direction. Plugging (5.2) into
(5.1), we conclude that the function h(y) satisfies

d2h
dy2 + 𝛽2h = 0 𝛽

2 = 𝜔
2

c2
T
− 𝜉2 (5.3)

which leads to the general solution

uz =
(

A1 sin 𝛽y + A2 cos 𝛽y
)

ei(𝜉x−𝜔t) (5.4)

The free surface boundary conditions are 𝜏yy = 𝜏xy = 𝜏zy = 0 at y = ±b, but we only need the last of
these for this SH-case. This gives

𝜕uz

𝜕y
= 0 at y = ±b

and hence the two equations

A1 cos 𝛽b − A2 sin 𝛽b = 0 A1 cos 𝛽b + A2 sin 𝛽b = 0

from which we conclude that cos 𝛽b sin 𝛽b = 0, which is satisfied by 𝛽b = n𝜋∕2 for (n = 0, 1, 2,…).
Thus, given a frequency, 𝜔, the resulting wavenumber is

𝜉 =
(
𝜔

2∕c2
T − n2

𝜋
2∕4

) 1
2

Actually, it’s wavenumbers (plural) because of the integer, n = 0, 1, 2,…, which means that there
are an infinite number of guided wave modes in the plate. For n = 0 things are relatively simple
because then 𝜉 = 𝜔∕cT and it’s just a plane shear wave. For any nonzero n, the through-thickness
displacement profile is not uniform and gets more complicated the larger n is. In addition, note
importantly that for nonzero n, the wavenumber is no longer proportional to frequency, which
means that all those modes will be dispersive. That may not seem like a big deal, but any real signal
will almost always be a pulse or toneburst in time and will thus contain at least some frequency
spread about the center frequency. Dispersion will cause an initially well-formed pulse or toneburst
to distort as it propagates because the different frequency components will propagate at different
velocities. That turns out to make interpretation of guided wave signals delightfully complicated.

Now note that for n = 1, 3, 5,… we have cos 𝛽b = 0 ⇒ A2 = 0 and hence

uz = A1 sin 𝛽yei(𝜉x−𝜔t)

which is antisymmetric with respect to the mid-plane of the plate, y = 0. Similarly, if n = 0, 2, 4,…
we have sin 𝛽b = 0 ⇒ A1 = 0 and hence

uz = A2 cos 𝛽yei(𝜉x−𝜔t)
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Figure 5.3 Plate wave dispersion curves for SH modes. Note that the lowest order (0) SH mode is
dispersionless, so the curve is a horizontal line. The other modes are only dispersionless at the
high-frequency limit, and each has a cutoff value below which they don’t propagate. The horizontal axis is
frequency-thickness, so we talk about thin and thick plates for small and large values of fd, respectively.

which is symmetric with respect to the mid-plane of the plate, y = 0. In discussing guided waves,
it will often be useful to describe the various modes as symmetric or antisymmetric, and then to
number them in order to keep track of which particular mode we’re dealing with. Plots of phase
velocity vs. frequency-thickness are called dispersion curves, as sketched in Figure 5.3.

Exercise 5.1 Repeat the aforementioned analysis for the case where the plate is in welded contact
with an elastic half-space on the lower surface. These guided waves are called Love waves.2

Now let’s go back and consider guided waves in a plate more generally. With

u⃗ = ∇Φ + ∇ × H⃗ (∇ ⋅ H⃗ = 0) (5.5)

2 Professor A. E. H. Love, Sedleian Professor of Natural Philosophy at Oxford and Fellow of the Queen’s College,
died on 5 June 1940, following an operation. He was aged 77. Up to a very short time before his death, he was
fulfilling the full duties of his Chair, lecturing and attending meetings of the Sub-Faculty of Mathematics. For the
last few years, his health had been frail, but only to the extent that he took a taxi to go into Oxford for his lectures
from St Margaret’s Road where he resided. To the end, he retained full use of all his faculties, and there was never
any apparent dimming of the acuteness with which he would deal with a piece of university business, the precision
of his lecturing, or the wisdom and judgment which he contributed to matters of current policy. Under the present
statutes, he was, at his age, ineligible for service on the Board of Faculty of the Physical Sciences, or the Board of
Visitors of the University Observatory, but he never on that account forsook the society of his colleagues as they
gathered at their informal lunch club before meetings of the Sub-Faculty. From: https://royalsocietypublishing.org/
doi/10.1098/rsbm.1941.0015.

I currently drive oldster carpool to the Methodist church on Sunday because my mother and her friends don’t
drive much anymore. I get caught up in all the gossip and afterward we talk smack about the sermon. A recent
sermon invoked Love waves, which the minister had read about on the internet. Since the church is directly across
the street from the College, he was a little concerned that there might be someone in the sanctuary who was an
expert in seismology and would call him out on some technical details. I made a point of telling him on the way out
that his description was pretty much spot on. Seismologically, that is. I offered no theological opinion, although
everybody in the carpool had them.

https://royalsocietypublishing.org/doi/10.1098/rsbm.1941.0015
https://royalsocietypublishing.org/doi/10.1098/rsbm.1941.0015


130 5 Guided Waves

we have

∇2Φ = 1
cL

𝜕
2Φ
𝜕t2 (5.6)

∇2Hp = 1
cT

𝜕
2Hp

𝜕t2 (p = x, y, z) (5.7)

If variations with respect to z are excluded, we write

ux =
𝜕Φ
𝜕x

+
𝜕Hz

𝜕y
(5.8)

uy =
𝜕Φ
𝜕y

−
𝜕Hz

𝜕x
(5.9)

uz =
𝜕Hy

𝜕x
−
𝜕Hx

𝜕y
(5.10)

and for plane waves, we have

Φ= f (y)ei(𝜉x−𝜔t) (5.11)

Hx = hx(y)ei(𝜉x−𝜔t) (5.12)

Hy = hy(y)ei(𝜉x−𝜔t) (5.13)

Hz = hz(y)ei(𝜉x−𝜔t) (5.14)

where we have assumed without loss of generality that the waves are propagating in the xy-plane.
We have, as we’ve done before

Φ= (A cos 𝛼y + B sin 𝛼y)ei(𝜉x−𝜔t) (5.15)

Hx = (C cos 𝛽y + D sin 𝛽y)ei(𝜉x−𝜔t) (5.16)

Hy = (E cos 𝛽y + F sin 𝛽y)ei(𝜉x−𝜔t) (5.17)

Hz = (G cos 𝛽y + H sin 𝛽y)ei(𝜉x−𝜔t) (5.18)

where

𝛼
2 = 𝜔

2∕c2
L − 𝜉2

𝛽
2 = 𝜔

2∕c2
T − 𝜉2 (5.19)

The displacements are then

ux = {i𝜉 (A cos 𝛼y + B sin 𝛼y) + 𝛽 (−G sin 𝛽y + H cos 𝛽y)} ei(𝜉x−𝜔t)

uy = {𝛼 (−A sin 𝛼y + B cos 𝛼y) − i𝜉 (G cos 𝛽y + H sin 𝛽y)} ei(𝜉x−𝜔t)

uz = {−𝛽 (−C sin 𝛽y + D cos 𝛽y) + i𝜉 (E cos 𝛽y + F sin 𝛽y)} ei(𝜉x−𝜔t)

and the stresses are

𝜏yy = (𝜆 + 2𝜇)
𝜕uy

𝜕y
+ 𝜆

𝜕ux

𝜕x

𝜏xy = 𝜇

(
𝜕uy

𝜕x
+
𝜕ux

𝜕y

)
𝜏yz = 𝜇

𝜕uz

𝜕y
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Note that we have eight unknowns A…H but the stress free boundary conditions and the top and
bottom surfaces only give six equations. We can get two more from ∇ ⋅ H⃗ = 0, which is here

𝜕Hx

𝜕x
+
𝜕Hy

𝜕y
= 0 at y = ±b

The resulting system of equations is{
(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} (A cos 𝛼b + B sin 𝛼b) + 2i𝜇𝜉𝛽 (−G sin 𝛽b + H cos 𝛽b) = 0{
(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} (A cos 𝛼b − B sin 𝛼b) + 2i𝜇𝜉𝛽 (G sin 𝛽b + H cos 𝛽b) = 0

𝛽
2 (C cos 𝛽b + D sin 𝛽b) + i𝜉𝛽 (−E sin 𝛽b + F cos 𝛽b) = 0

𝛽
2 (C cos 𝛽b − D sin 𝛽b) + i𝜉𝛽 (E sin 𝛽b + F cos 𝛽b) = 0

2i𝜉𝛼 (−A sin 𝛼b + B cos 𝛼b) + (𝜉2 − 𝛽2) (G cos 𝛽b + H sin 𝛽b) = 0

2i𝜉𝛼 (A sin 𝛼b + B cos 𝛼b) + (𝜉2 − 𝛽2) (G cos 𝛽b − H sin 𝛽b) = 0

𝛽 (−E sin 𝛽b + F cos 𝛽b) + i𝜉 (C cos 𝛽b + D sin 𝛽b) = 0

𝛽 (E sin 𝛽b + F cos 𝛽b) + i𝜉 (C cos 𝛽b − D sin 𝛽b) = 0

The structure becomes a bit clearer if we write this as a matrix equation. To get the dispersion
relation, we need to set the determinant of the coefficient matrix to zero, but the determinant can
be expanded as the product of four subdeterminants, each of which may be separately set to zero
in order to recover four different families of guided wave modes.|||||||||||||||||||||||

{
(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} cos 𝛼b

{
(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} sin 𝛼b 0 0{

(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} cos 𝛼b −
{
(𝜆 + 2𝜇)𝛼2 + 𝜆𝜉2} sin 𝛼b 0 0

0 0 −i𝜉𝛽 sin 𝛽b i𝜉𝛽 cos 𝛽b
0 0 i𝜉𝛽 sin 𝛽b i𝜉𝛽 cos 𝛽b

−2i𝜉𝛼 sin 𝛼b 2i𝜉𝛼 cos 𝛼b 0 0
2i𝜉𝛼 sin 𝛼b 2i𝜉𝛼 cos 𝛼b 0 0

0 0 −𝛽 sin 𝛽b 𝛽 cos 𝛽b
0 0 𝛽 sin 𝛽b 𝛽 cos 𝛽b

−2i𝜇𝜉𝛽 sin 𝛽b 2i𝜇𝜉𝛽 cos 𝛽b 0 0
2i𝜇𝜉𝛽 sin 𝛽b 2i𝜇𝜉𝛽 cos 𝛽b 0 0

0 0 𝛽
2 cos 𝛽b 𝛽

2 sin 𝛽b
0 0 𝛽

2 cos 𝛽b −𝛽2 sin 𝛽b
(𝜉2 − 𝛽2) cos 𝛽b (𝜉2 − 𝛽2) sin 𝛽b 0 0
(𝜉2 − 𝛽2) cos 𝛽b −(𝜉2 − 𝛽2) sin 𝛽b 0 0

0 0 i𝜉 cos 𝛽b i𝜉 sin 𝛽b
0 0 i𝜉 cos 𝛽b −i𝜉 sin 𝛽b

|||||||||||||||||||||||

= 0 (5.20)

Solution I: The solution with only the subdeterminant corresponding to nonzero C,F is

𝛽(𝜉2 + 𝛽2)cos2
𝛽b = 0 (5.21)
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and we have

ux = uy = 0 uz = (𝛽C + i𝜉F) sin 𝛽yei(𝜉x−𝜔t) (5.22)

Solution II: The solution with only the subdeterminant corresponding to nonzero D,E is

𝛽(𝜉2 + 𝛽2)sin2
𝛽b = 0 (5.23)

and we have

ux = uy = 0 uz = (−𝛽D + i𝜉E) cos 𝛽yei(𝜉x−𝜔t) (5.24)

Solution III: The solution with only the subdeterminant corresponding to nonzero A,H is

tan 𝛽b
tan 𝛼b

= − 4𝛼𝛽𝜉2

(𝜉2 − 𝛽2)2 (5.25)

and we have

ux = (i𝜉A cos 𝛼y + 𝛽H cos 𝛽y)ei(𝜉x−𝜔t)

uy = −(𝛼A sin 𝛼y + 𝜉H sin 𝛽y)ei(𝜉x−𝜔t) (5.26)
uz = 0

Solution IV: The solution with only the subdeterminant corresponding to nonzero B,G is

tan 𝛽b
tan 𝛼b

= −(𝜉2 − 𝛽2)2

4𝛼𝛽𝜉2 (5.27)

and we have

ux = (i𝜉B sin 𝛼y − 𝛽G sin 𝛽y)ei(𝜉x−𝜔t)

uy = (𝛼B cos 𝛼y − i𝜉G cos 𝛽y)ei(𝜉x−𝜔t) (5.28)
uz = 0

The frequency spectra for I and II are just the SH plate waves we discussed previously. III and IV
are coupled L- and SV -waves in a plate, which are usually called Lamb waves. Lamb waves turn
out to be incredibly useful for inspecting large plate-like structures, which we’ll discuss shortly.
First, however, notice the obvious point that Lamb waves are going to be dispersive because the
frequency spectra are given by the solution of transcendental equations. For both III and IV there
will be an infinite number of antisymmetric and symmetric Lamb wave modes, respectively. This
was illustrated for an aluminum plate in Figure 5.1. Corresponding dispersion curves for other
metals look pretty similar, although there are subtle differences.

You never quite know when esoteric knowledge of wave propagation will be useful. In the
80 years since a trucker named Malcolm McLean first conceived the modern-day shipping con-
tainer, shipping has exploded into a US$ 400 billion a year industry [10]. The shipping container,
however, has revolutionized much more than the shipping industry. It has radically transformed
supply chains, fundamentally changed domestic and international economies across the world,
and changed societies in the process. In a recent survey by the World Shipping Council, whose
members operate approximately 90% of the global liner ship capacity, the international liner
shipping industry reported transporting approximately 130 million containers packed with cargo,
with an estimated value of more than US$ 4 trillion [11]. These metal boxes will remain a staple in
the future for an industry that relies upon their ease of use for transporting all types of cargo.

Despite their versatility, shipping containers are easy to break into, and difficult to keep track
of, as they are transported around the globe. Cargo theft and cargo loss are estimated to cost the
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industry at least US$ 50 billion annually, according to The National Cargo Security Council [12].
Losses can occur in a myriad of ways, from containers being mislaid, mislabeled, or simply failing
to arrive at their destination, to instances involving premeditated criminal intent, such as breaking
into ports to steal goods, or pirates attacking crews at gunpoint for their valuable cargo. In the
last several decades, security and visibility of the global supply chain has largely been addressed
through improved locking mechanisms and radio tracking devices that are attached to shipping
containers, and it has been estimated that there are now over one million remote tracking systems
in containers worldwide [13]. The latest adaptations to the existing technology include GPS-capable
devices that use satellite, cellular, or Wi-Fi connectivity.

These methods have come at a high monetary cost due to the expensive infrastructure needed to
track devices that use short-range radio frequency identification (RFID) and in some cases, high
bandwidth costs to transmit the data wirelessly. Vulnerabilities and shortfalls still exist in current
RFID tracking methods, especially during disaster relief when wireless networks are destroyed, in
emerging markets that exist outside wireless coverage areas, and in providing real-time information
to distant stakeholders.

Technology now offers lower cost and higher-efficiency sensors connected to the internet that
can better inform decision-making. Recent developments in this technology have improved sens-
ing capability with lower power consumption. Advances in computational abilities, to handle the
large amount of data produced by these sensors, have made it possible to uncover information.
Ubiquitous devices still have bandwidth and power limitations, but the challenge of working in
austere environments has been improved via on-board processors with the ability to do edge com-
puting. By processing data near the sensor, bandwidth is dramatically reduced between the sensors
and any central data center. Thus, it is now possible to equip containers with a device that can talk to
stakeholders during their entire voyage in the transportation network. Better yet, it is possible to put
sensors on the inside of the shipping container, without drilling holes to feed signal wires, by trans-
mitting data through the container wall using ultrasonic guided waves, as illustrated in Figure 5.4.
The first antitheft sensor that we explored systematically was long-wave infrared [14]. IR cameras
used to cost as much as my house, but now they are snap-on attachments to smartphones that cost
at most a few hundred dollars. They are particularly sensitive to body heat, which makes them ide-
ally suited to detection of thieves breaking into shipping containers. Even very quiet ninjas can’t

GridSatTag Lamb waves

carry information

Monitoring

system

(outside container)

(inside container)

(a) (b)

Figure 5.4 Infrared cameras can detect a person’s body heat entering a shipping container (a). The Lamb
waves are able to propagate across the corrugation (b) and so both the internal and external units can be
located to minimize damage as cargo is being loaded/unloaded and containers are being stacked/unstacked.
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hide from IR, and we’ve demonstrated an approach to use cadiotropic reflectors to cover the interior
of a 40-ft container, and then use machine learning to automatically detect the presence of humans.
A GRIDSAT Tag Architecture utilizes interconnected GRID tags configured in a self-healing mesh
network, which communicate with a GRIDSAT tag. Messages are compiled and transmitted via
satellite communications to stakeholders through a GIS Software Application Package [15].

Lamb waves are used to communicate sensor/imager information gathered inside a sealed
shipping container to the GRID tag attached to the outside of the container. One subtlety is
that encoding information into the Lamb wave signals via frequency modulation must take into
account the dispersion of the various Lamb wave modes, so the choice of frequency relative to
container wall thickness is rather important. I feel a little bad that we haven’t really done any
scattering yet, so Figure 5.5 is a teaser from many years ago where scattering of guided waves
showed up. Sun and Johnston [16] experimentally studied interaction of Lamb waves with
adhesively bonded lap splice and doubler joints in aluminum sheets with and without rivets.
They monitored the amplitude of the S0 mode while scanning a pair of contact water-coupled
piezoelectric transducers along and across the joint. For the doublers, disbonds showed up as
the amplitude maxima, for the lap joints, they corresponded to the amplitude minima. The rivet
rows produce amplitude minima due to scattering. Interaction of guided waves with defects is
a very complicated mechanism involving scattering [17] and mode conversion. One goal of our
research has been the development of Lamb wave tomography as a fully automated inspection
technique that is robust enough to rapidly assess large areas, and represent the defect information
in a form, convenient for visual interpretation. Key to this concept is methods for automatically
extracting features from many, many measurements in order to provide inputs for tomographic
reconstruction. That could be used as our working definition of data engineering.

Transmitter (T)

Amplitude of R1 as a function of X

T - R1

Amplitude of R2 as a function of X

T - R2

Receiver (R1)
Receiver (R2)

Y

X

Figure 5.5 Lamb wave detection of disbonds in a riveted lap joint. As the transducers are scanned along
the joint, the rivet-scattering signal is enhanced/suppressed depending on whether the receiver is on the
top/bottom plate.
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5.2 Cylindrical Guided Waves

Guided waves in plates and shells are incredibly useful for a wide range of applications, but as
you may have noticed there is some significant amount of math involved. That’s a feature, not a
bug, BTW. We worked hard for many years to learn lots of math. We like it when high-level math
provides a barrier to competition. With that in mind, let’s level up.

There are analogous guided waves in rods and pipes, which are likewise incredibly useful for a
wide range of applications. Mechanical vibrations can be induced to propagate from one place to
another, accumulating information about the structure as they travel along. The vibrations recorded
at some other location can then be interpreted to infer things about structural health. For example,
consider a section of piping that goes under a road or is covered by lagging or transits a compartment
that is inaccessible. Guided waves, which are sensitive to pipe wall thickness, can be used to detect
corrosion-thinning in places where it would be expensive, inconvenient, or unpleasant to expose
the pipe and check directly. On aircraft carriers there are sewage tanks tucked here and there,
because when one flushes a toilet that doesn’t get dumped into the ocean. The same is true for
airliners, BTW.3 Periodically, when a carrier is in for maintenance, some sailor has to go into the
sewage tanks and inspect for corrosion that might cause a leak. You may agree with me that Lamb
waves can be a better way to do that. In that case, I think you’d also agree that guided waves might
be quite useful to inspect piping that for whatever reason has been routed through sewage tanks.
I happen to know that this is in issue because aircraft carriers are built near me in Newport News,
Virginia. We had the apprentice shipbuilders make us up some representative samples of piping
going through bulkheads so that we could demonstrate in the laboratory that such a guided wave
inspection scheme could be made to work. We presented our preliminary results at an industry
conference with the excellent name MegaRust. Corrosion is a significant cost driver for the Navy.

Back to math. Way back in Chapter 2, I suggested an exercise where you go through separation
of variables for the Helmholtz equation in cylindrical and spherical coordinates. Here’s one place
where you’ll need that in cylindrical coordinates. There will be others. If you’ve never come across
Bessel, Neumann, and Hankel functions before, take a bit of time to read up on them. Not just on
Wikipedia. Ideally, you would have picked up used copies of “Methods of Theoretical Physics” by
Herman Morse and Philip M. Feshbach which was published in 1953.4 It’s two volumes and over a
thousand pages. You can probably find downloadable versions as well. I walked across the Charles
River on an annually Smoothed bridge5 and paid real money for copies at the MIT bookstore when
I was a graduate student at BU in the 1980s. We’ll talk more about these functions in the chapter
on scattering from cylinders, so you can also read ahead in this book, but do keep an eye out for
both volumes of Morse and Feshbach. Having a reference like that at hand and knowing how to
find answers to high-level math questions in it can be highly lucrative.

Now consider guided wave propagation in a solid, cylindrical rod as shown in Figure 5.6. As in
the treatment of plate problems, we formulate the stresses and displacements in terms of potential
functions Φ and H⃗:

u⃗ = ∇Φ + ∇ × H⃗ ∇ ⋅ H⃗ = F(r, t) (5.29)

3 See MythBusters S9.E2 https://www.imdb.com/title/tt1887371 where Grant, Kari and Tory look into the urban
legend of the Blue Ice – frozen toilet waste falling from the sky.
4 When one of my graduate advisors was a graduate student at MIT in the 1950s, he got assigned the task of
working through all the exercises in both volumes of Morse and Feshbach to proof them prior to publication. After
MIT, Guido Sandri was a postdoc for Oppenheimer at Princeton.
5 https://www.atlasobscura.com/places/harvard-bridge-smoot-measurements.

https://www.imdb.com/title/tt1887371
https://www.atlasobscura.com/places/harvard-bridge-smoot-measurements
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r = a

z

Figure 5.6 Cylindrical rod of radius r = a with propagation in the z-direction.

where F(r, t) is an arbitrary function. In cylindrical coordinates, we can write the components of
displacement as:

ur =
𝜕Φ
𝜕r

+ 1
r
𝜕Hz

𝜕𝜃

−
𝜕H

𝜃

𝜕z
(5.30)

u
𝜃
= 1

r
𝜕Φ
𝜕𝜃

+
𝜕Hr

𝜕z
−
𝜕Hz

𝜕r
(5.31)

uz =
𝜕Φ
𝜕z

+ 1
r
𝜕

𝜕r
(rH

𝜃
) − 1

r
𝜕Hr

𝜕𝜃

(5.32)

Just to reinforce the point about having the right reference materials at hand, how often in life does
one need to know gradient and curl in cylindrical coordinates? It’s not something you remember;
it’s something you look up when you need it. Knowing where to look is the key skill. I know it
seems old fashioned to look things like that up in musty old books, but remember that something
like Morse and Feshbach was thoroughly checked for accuracy 70 years ago and has been used by
literal generations of researchers ever since. Who knows whether the most recent edits of Wikipedia
are correct?

The potentials Φ and H⃗ satisfy the scalar and vector wave equations

∇2Φ + 1
c2

L

𝜕
2Φ
𝜕t2 ∇2H⃗ + 1

c2
L

𝜕
2H⃗
𝜕t2 (5.33)

where

∇2Φ= 𝜕
2Φ
𝜕r2 + 1

r
1
r
𝜕Φ
𝜕r

+ 1
r2
𝜕

2Φ
𝜕𝜃

2 + 𝜕
2Φ
𝜕z2 (5.34)

∇2H⃗ =
(
∇2Hr −

Hr

r
− 2

r2

𝜕H
𝜃

𝜕𝜃

)
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+
(
∇2H

𝜃
−

H
𝜃

r
+ 2

r2

𝜕Hr

𝜕𝜃

)
ê
𝜃
+ ∇2Hzêz (5.35)

Sorry, but I can’t help mentioning again that Laplacian in cylindrical coordinates is one of those
things that you might just need some time. We just needed the Laplacian of a scalar and then a
vector in cylindrical coordinates. I’m pretty sure I typed those equations correctly, but how sure are
you that there isn’t some typo? Authoritative reference sources on your bookshelf can make it easy
to check things like that to defend against propagating a simple error in your own work.

The stresses are given by Hooke’s law and the strain–displacement relations, which was simple
to do in Cartesian coordinates, but they are somewhat more complicated in cylindrical coordinates

𝜏rr = 𝜆
(
𝜕ur

𝜕r
+

ur

r
+ 1

r
𝜕u

𝜃

𝜕𝜃

+
𝜕uz

𝜕z

)
+ 2𝜇

𝜕ur

𝜕r
(5.36)
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𝜏zz = 𝜆
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+
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𝜏r𝜃 = 𝜇
(
𝜕u

𝜃

𝜕r
−

u
𝜃

r
+ 1

r
𝜕ur

𝜕𝜃

)
(5.39)

𝜏
𝜃z = 𝜇

(
1
r
𝜕uz

𝜕𝜃

+
𝜕u

𝜃

𝜕z

)
(5.40)

𝜏zr = 𝜇
(
𝜕ur

𝜕z
+
𝜕uz

𝜕r

)
(5.41)

The boundary conditions for the problem will be

𝜏rr = 𝜏r𝜃 = 𝜏zr = 0 at r = a (5.42)

which is only three equations instead of the six that we had for the plate. Because Φ and H⃗ satisfy
the wave equation, we can write the general form of these potential functions for a z-propagating
harmonic wave as:

Φ= f (r)Θ
𝜙
(𝜃)ei(𝜉z−𝜔t) (5.43)

Hr = hr(r)Θr(𝜃)ei(𝜉z−𝜔t) (5.44)

and so on. Plugging back into the wave equation, we find for Φ:

f ′′Θ
𝜙
+ 1

r
f ′Θ

𝜙
+ 1

r2 fΘ′′
𝜙
− 𝜉2fΘ

𝜙
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2

c2
L

fΘ
𝜙

(5.45)

which can be rewritten as:

r2 f ′′

f
+ r r′

r
−

(
𝜉

2 − 𝜔
2

c2
L

)
r2 = −

Θ′′
𝜙

Θ
𝜙

= k2 (5.46)

Thus we have the solution

Θ
𝜙
= A sin k𝜃 + B cos k𝜃 (5.47)

and single-valuedness on Θ
𝜙

makes k = n an integer. Later considerations on the nature of
𝜃-dependence for the longitudinal, torsional, or flexural modes would lead us to discard either the
sin or cos terms in each. Hence we write

Φ= f (r) cos n𝜃ei(𝜉z−𝜔t) (5.48)

Hr = hr(r) sin n𝜃ei(𝜉z−𝜔t) (5.49)

H
𝜃
= h

𝜃
(r) cos n𝜃ei(𝜉z−𝜔t) (5.50)

Hz = hz(r) sin n𝜃ei(𝜉z−𝜔t) (5.51)

Now consider the radial dependence. Recall that for Φ we have

d2f
dr2 + 1

r
df
dr

+
(
𝛼

2 − n2

r2

)
f = 0 (5.52)

where we have written 𝛼2 = 𝜔
2

c2
L
− 𝜉2. This is Bessel’s equation of order n, which has the solution

f (r) = AJn(𝛼r) + BNn(𝛼r) (5.53)
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For n = 0, 1, 2, these radial functions are certainly available at Wikipedia, so take a look and note
that the Neumann functions are all singular at the origin. Since f (r) must be finite at r = 0, we here
set B = 0. We get a similar result for hz(r) but with 𝛼2 replaced by 𝛽2 = 𝜔

2

c2
T
− 𝜉2

hz(r) = BJn(𝛽r) (5.54)

The remaining two equations for hr and h
𝜃

will be coupled
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h
𝜃
= 0

Here comes a nice trick. It’s one of those clever things that someone figured out many years ago
and wrote down in a musty book. Simply add and subtract these two equations to get{
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}
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) = 0 (5.55){
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}
(hr + h

𝜃
) = 0 (5.56)

which have the solutions

hr − h
𝜃
= 2B2Jn+1(𝛽r) (5.57)

hr + h
𝜃
= 2B1Jn−1(𝛽r) (5.58)

where we haven’t bothered to write the Neumann part of the solutions. From these, we can then
write

hr = B1Jn−1(𝛽r) + B2Jn+1(𝛽r) (5.59)

h
𝜃
= B1Jn−1(𝛽r) − B2Jn+1(𝛽r) (5.60)

We thus have four coefficients A,B,B1,B2 but only three boundary conditions. Recall that in the
plate case, we used ∇ ⋅ H⃗ = 0 to get additional equations. Here we will use the gauge invariance
to eliminate one of the constants. Setting B1 = 0 gives hr(r) = −h

𝜃
(r), which results in no loss of

generality. We then have
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and the stress components we need are
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Dispersion relations are calculated by plugging f , hr , hz into these, setting r = a and then setting
the determinant of the 3 × 3 characteristic matrix to zero.

0 =

|||||||||

{
𝜆(𝛼2+𝜉2)(𝛼a)2

2𝜇𝛼2 + (𝛼a)2 − n2
}

Jn(𝛼a) + 𝛼aJ′n(𝛼a)

n
{
𝛼aJ′n(𝛼a) − Jn(𝛼a)

}
−𝛼aJ′n(𝛼a)

(5.63)

{
n2 − (𝛽a)2} Jn(𝛽a) − 𝛽aJ′n(𝛽a) 2n
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𝛽aJ′n(𝛼a) − Jn(𝛼a)

}
−n
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𝛽aJ′n(𝛽a) − Jn(𝛽a)

}
−
{

2n2 − (𝛽a)2} Jn(𝛽a) + 2𝛽aJ′n(𝛽a)
𝜉

2−𝛽2

2𝜉2 𝛽aJ′n(𝛽a) nJn(𝛽a)

|||||||||
Note that the 𝜃-dependence as well as the factor ei(𝜉z−𝜔t) are not in the coefficient matrix. As we
found in the plate case, there will be an infinite number of solutions and most of these guided
wave modes will have dispersion because wave number and frequency will not be proportional.
Fortunately, some of the modes do have fairly simple physical interpretation, so we can at least
give names to the various families of guided wave modes in rods.

5.2.1 Torsional Modes in a Rod

A family of torsional modes results when only the u
𝜃

displacement is assumed to exist. Wikipedia
tells me that, “An Indian burn … is a pain-inducing prank, where the prankster grabs onto the
victim’s forearm or wrist, and starts turning the skin away from themselves with one hand, and with
another hand towards themselves, causing an unpleasant burning sensation to the skin.” While I
grew up using that term, that was the 1970s and it’s now rather offensive and I would never use such
a term. Moreover, what we now call the Americas were fully populated in 1492 when Columbus
sailed the ocean blue with his guns, germs, and steel. That the New World was depopulated over the
course of a century or two is profoundly sad. It’s a shame that the Aztecs didn’t have the technology
and foresight to tell the conquistadors to, “Get off my lawn!”

Back to alternating torsional deformations in a metal rod, not your arm. Since only Hz ≠ 0 and
we have

Hz = B3J0(𝛽r)ei(𝜉z−𝜔t) (5.64)

Using the 𝜏r𝜃 = 0 boundary condition

r 𝜕
𝜕r

(u
𝜃

r

)
= 0 at r = a

gives

𝛽aJ0(𝛽a) = 2J1(𝛽a) = 0 (5.65)

The dispersion curves for these torsional modes are sketched later (Figure 5.7). Note that the
lowest-order mode is dispersionless just as for SH-waves in a plate and that all other modes are
dispersive.

5.2.2 Longitudinal Waves in a Rod

Next consider the case when u
𝜃
= 0 and recall that

ur =
𝜕Φ
𝜕r

−
𝜕H

𝜃

𝜕z
(5.66)

uz =
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+ 1
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𝜃
) (5.67)
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Figure 5.7 Torsional (a) and longitudinal (b) wave mode dispersion curves for a rod with a Poisson’s ratio
of 0.29. Note that the lowest-order torsional mode is dispersionless. The other modes are not. Where their
phase velocities tend to infinity indicates that they are cut off, and below those values of frequency
normalized by radius they do not propagate.

where, for n = 0

Φ= AJ0(𝛼r)ei(𝜉z−𝜔t) (5.68)

H
𝜃
= −B2J1(𝛽r)ei(𝜉z−𝜔t) (5.69)

The dispersion relation is then
2𝛼
a
(𝛽2 + 𝜉2)J1(𝛼a)J1(𝛽a) − (𝛽2 − 𝜉2)2J0(𝛼a)J1(𝛽a) − 4𝜉2

𝛼𝛽J1(𝛼a)J0(𝛽a) = 0 (5.70)

which is called the Pochhammer frequency equation for longitudinal modes in a rod. The displace-
ments for this mode are

ur = B2

{
− A

B2
𝛼J1(𝛼r) + 𝜉J1(𝛽r)

}
ei(𝜉z−𝜔t) (5.71)

uz = B2

{
A
B2
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}

ei(𝜉z−𝜔t) (5.72)
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𝛽

2 − 𝜉2

2𝜉2

J1(𝛽a)
J1(𝛼a)

(5.73)

so we see that these are analogous to the coupled L- and SV -modes in a plate. Dispersion curves
for the first few modes are also sketched in Figure 5.7.

5.2.3 Flexural Waves in a Rod

The torsional and longitudinal modes were for n = 0. The case of n = 1 corresponds to the
lowest-order family of flexural modes. Higher-order flexural modes arise for n ≥ 2. The frequency
spectra for n = 2 are shown in Figure 5.8. The spectrum looks similar for n > 2.
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Figure 5.8 Phase velocities of extensional and flexural modes in a cylindrical bar with Poisson’s ratio of
0.29 (a). The normalization is a little different, but what’s called the extensional mode here should look
familiar from Figure 5.7. Different authors normalize things in different ways, so I haven’t tried to present
dispersion curves in a uniform manner. I’m hoping that you’ll code up the various dispersion relations and
plot phase- and group-velocity in different ways until things make sense to you. You’ll then have a tool at
the ready to help understand complex guided wave physics in a variety of scenarios. Plot (b) shows group
velocities for guided wave modes in an aluminum rod of 8 mm diameter. All existing modes (except
fundamental torsional mode) up to 300 kHz are shown. Note that for some frequencies some of the
longitudinal (L) and flexural (F) modes are reasonably nondispersive, that is, the group velocity is relatively
constant. For other frequencies, the group velocities are not even close to horizontal flat lines, so those
modes are dispersive at those frequencies. I hope you noticed that the axes of this plot aren’t normalized.
Most people normalize the x-axis with a characteristic thickness (for plates/pipes) or radius (rods) because
the results are more general, but then if you’re plotting your own dispersion curves, do it in whatever way
makes the most sense to you.
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Exercise 5.2 Consider in some detail how the various special cases follow from the general solu-
tion, and how they can be derived independently.

5.3 Guided Waves in Pipes

Now consider the same geometry as before, but this time the elastic medium is an infinite cylin-
drical shell with inner radius a and outer radius b. The problem geometry and a simple inspection
scenario are shown in Figure 5.9. Boundary conditions are

𝜏rr = 𝜏r𝜃 = 𝜏rz = 0 at r = a, b (5.74)

The potentials are as before

Φ= f (r) cos n𝜙 cos(𝜔t + 𝜉z) (5.75)

Hr = hr(r) sin n𝜙 sin(𝜔t + 𝜉z) (5.76)

H
𝜃
= h

𝜃
(r) cos n𝜙 sin(𝜔t + 𝜉z) (5.77)

x

y

z

Figure 5.9 Pipe with inner radius r = a and outer radius r = b with propagation in the z-direction. In the
photo, note the two contact transducers for a pitch-catch measurement, and then the rather complex
waveform on the tablet.
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Hz = hz(r) sin n𝜙 cos(𝜔t + 𝜉z) (5.78)

with the radial functions

f = AJn(𝛼r) + BNn(𝛼r) (5.79)
hz = CJn(𝛽r) + DNn(𝛽r) (5.80)

Similarly to the rod, we write

2h1 = hr − h
𝜃
= 2A1Jn+1(𝛽r) + 2B1Nn+1(𝛽r) (5.81)

2h2 = hr + h
𝜃
= 2C1Jn−1(𝛽r) + 2D1Nn−1(𝛽r) (5.82)

Note that there is no concern about the singularity of the Neumann functions because a > 0. Gauge
invariance allows us to set h2 = 0 without loss of generality. Displacements and stresses are then

ur =
{

f ′ + (n∕r)hz + 𝜉h1
}

cos n𝜃 cos(𝜔t + 𝜉z)

u
𝜃
=
{
−(n∕r)f + 𝜉h1 − h′

z
}

sin n𝜃 cos(𝜔t + 𝜉z)

uz =
{
−𝜉f − h′

1 − (n + 1)h1∕r
}

cos n𝜃 sin(𝜔t + 𝜉z)
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[
−𝜆(𝛼2 + 𝜉2)f + 2𝜇
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)
+ 𝜉h′
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]
cos n𝜃 cos(𝜔t + 𝜉z)

𝜏r𝜃 = 𝜇
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−2n

r
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f ′ −

f
r

)
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)]
× sin n𝜃 cos(𝜔t + 𝜉z)

𝜏rz = 𝜇
[
−2𝜉f ′ − n
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{
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1 +
(n + 1

r
− 𝛽2 + 𝜉2

)
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}
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hz

]
× cos n𝜃 sin(𝜔t + 𝜉z)

Applying the boundary conditions at r = a and r = b gives six equations, which can be solved for
a dispersion relation by setting the determinant of the coefficient matrix equal to zero.

Exercise 5.3 Write down that determinant.

In general, the frequency spectrum is very complicated, but the overall structure is pretty similar
to Figure 5.1. Next, consider a slight generalization of the problem that turns out to make it quite
a lot more complicated. If the cylindrical elastic tube is filled with a liquid, then guided waves
can propagate in either the elastic solid or in the liquid itself, although the liquid only supports
compressional waves, of course. Actually, it’s perhaps even a bit more complex than that, since
there could even be cases where modes propagate at the interface between the solid and liquid,
somewhat analogous to leaky Rayleigh waves at the interface between solid and liquid halfspaces.

Boundary conditions are

𝜏rr = 𝜏r𝜃 = 𝜏rz = 0 at r = b (5.83)

and, at the inner diameter

𝜏rr = p and 𝜏r𝜃 = 𝜏rz = 0 at r = a (5.84)

along with an additional boundary condition that the ur be continuous at the inner diameter.
That will give a 7 × 7 coefficient matrix whose determinant is set to zero to solve for a frequency
spectrum. But why might I care about that? Good question. Here’s two answers. The obvious appli-
cation is that there are all manner of piping systems that should be inspected, but they are filled
with fluids. Without looking at the dispersion curves, it would be tough to design an inspection
scenario. The ultrasonic energy might travel mostly in the fluid and flaws in the pipe wouldn’t
show up. There might be some particularly interesting effects whereby particular wave modes give
quite good sensitivity to particular flaws of interest. A less obvious answer is that long-bones filled
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with marrow might be well approximated by this admittedly simple geometry, and ultrasound
propagating in long bones could measure fracture healing or bone thinning without the use of
ionizing radiation. A potential application I learned about recently isn’t obvious at all. Spies could
attach a MHz-frequency guided wave transmitter to a water pipe inside a building they want to spy
on. Their adversaries might have devices to check for radiowave transmissions, but they wouldn’t
think to make sure that pretend plumbers haven’t attached a device that transmits vibrations
out to the street where the spies have plumbed a receiver which senses the guided wave coming
from inside the building. Megahertz frequencies are inaudible and the vibrations can’t be felt by
touching the pipe. Sneaky, huh?

Exercise 5.4 Write down the 7 × 7 determinant and see if you can solve it to get a sense of the
dispersion curve behavior.

5.4 Data Engineering for Tomography

Detection of hidden corrosion in plates and pipes is a very important industrial problem because
very often only one side of the object is open for the inspection. The pulse-echo thickness measure-
ment technique with bulk waves is tedious and can be inaccurate, especially in corroded areas with
rough surfaces. The frequency-thickness dependence of the velocity of ultrasonic guided waves
means their arrival time will change accordingly, making it possible to judge the size and degree of
the corrosion damage. Corrosion also affects the amplitudes of reflected and transmitted signals,
and filters out some modes which may have been initially present in the signal, but have an f ⋅ d
product in the corroded region below their cut-off frequency.

In science things can go in and out of fashion.6 Take radar, for instance. It was highly fashionable
during and after World War II, even though the atomic bomb got all the publicity. At the height of
the Cold War big aerospace companies were paying highly inflated salaries to anybody who could

6 I know quite a lot about fashion because my wife used to buy sportswear for a chain of 132 department stores. At
social events, her friends didn’t want to talk about the mathematics of scattering, so I learned to talk about fashion. I
never ascribed to “fashion before comfort” although I do understand the function of an irrationally expensive
handbag and I appreciate that the women in my life have strong shoe games. I wear pretty much the same thing
most of the time, and as fashions fluctuate, I’m sometimes inadvertently on trend. Or not. I don’t really care all that
much about fashion.

A few years ago, I switched over from danglie ties to bow ties. Each time when I took off my tie I would throw it
away. Initially, my wife said things like, “Good, I’ve always hated that tie.” Since I don’t wear ties all that often, this
process took almost a year, and as I got down to the last several ties, my wife said things like, “You aren’t going to
throw that tie away are you?” to which I responded something like, “Haven’t you been paying attention for the last
year?” and she said, “But I gave you that tie.” Inside my head, and only inside my head, I said, “You also gave me
those other ties that you ‘always hated’ and were glad when I threw them in the trash.” I know enough about fashion
to understand that a foundational principle is that people need to hate all their clothes four times a year and go buy
new ones or the department stores would all go out of business. So far none of my bowties have been declared ugly.

Ludwig Prandtl gets credit for boundary layer theory in fluid mechanics, which accounts for viscosity of the fluid
flow near the surface of the wing or whatever. The Nazis often used Prandtl’s international reputation as a scientist
to promote Germany’s scientific agenda. The Prandtl number was named after him. It’s quite disappointing to read
that he supported the Nazis because I remembered a funny anecdote that I heard in a fluid mechanics class in the
1980s. Guests were coming over for dinner and Prandtl came downstairs dressed in an ugly tie. His wife told him to
go back upstairs and change his tie because the dinner guests were starting to arrive. When he didn’t come back
down promptly, his wife excused herself and went upstairs to fetch him, only to find him asleep in his bed. Since
taking off his tie was the first part of his nightly routine, after he took off his tie he continued to undress and put on
his jammies and went to sleep. He was probably thinking about the mathematics of fluid mechanics rather than
small talk about fashion with his dinner guests.
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recognize Maxwell’s equations in neon lights, no matter what ridiculous outfit they showed up for
work wearing. My daily wardrobe was the uniform of an Air Force Captain, and I had developed
some expertise in using Maxwell’s equations for understanding radar scattering, but by the time I
traded in my dress blues for blue pinstripes, the Berlin Wall had come down and radar scattering
had gone out of fashion. Most of those big aerospace companies merged with, or were gobbled
up, by competitors. I went and did other things that were in fashion, like medical imaging and
structural health monitoring, sometimes using Maxwell’s equations and sometimes not.

It turns out that the thing that I’ve been doing professionally for four decades now is suddenly
on trend. The currently fashionable name for it is data engineering, which encompasses many con-
cepts in disciplines such as signal processing and computer engineering, representing the critical
data acquisition and processing steps required to prepare massive datasets for study with mod-
ern machine learning algorithms. For example, biomedical datasets are measured in petabytes
and comprise data types ranging from DNA sequences to text-based medical histories to wearable
sensor-generated outputs like heartrate. NIH envisions a biomedical enterprise in which data and
information generated in the field, laboratory, and clinic are processed and analyzed in real time
and readily shared. In an increasingly data-rich world, these advances are essential to enhancing
health, lengthening life, and reducing illness and disability.

As you may have noticed, this book purports to be about the mathematics of the scattering of
acoustic, electromagnetic, and elastic waves from various objects, discontinuities, or inclusions.
What we’re doing is called forward scattering, meaning that the incident wave is specified as is
the size, shape, orientation, and composition of the scatterer. The mathematics is used to predict
the resulting scattered waves in order to gain insight into the behavior. Analytic solutions are often
used in conjunction with experimental measurement and numerical simulations in order to under-
stand enough of the scattering behavior that strategies can be developed to deduce the properties of
an unknown scatterer from features in the scattered field(s). The so-called inverse scattering prob-
lem is, in general, unsolvable. Or so we used to think.

If you have fed it a sufficient training data set, your fashionable new machine learning system
can output “answers” for any new, unknown input. Some people get a little overexcited about all
of this, and then are disappointed when it doesn’t work very well in the real world. That’s usually
because they’ve underestimated the amount of training data they’ll need by an order of magnitude
or three. The answer, happily for us, is data engineering. You have to put some effort into figuring
out what inputs to present to your machine learning system or it will GINGO–GINGO–GINGO all
over your fancy new danglie necktie [18].

So, we use our hard-won knowledge of the scattering (forward) behavior to make intelligent deci-
sions about what features to use from our input data streams to feed to our classifier. In my research
group, we first ran into this family of issues as we were developing a structural health monitoring
technique called Lamb Wave Tomography. Accurate tomographic reconstructions require that fea-
tures from rather a lot of waveforms need to be reliably extracted as quickly as possible. There are
geometric constraints, but for our work, we were able to overcome many of those to figure out what
was likely to be practical. I’ll tell you the story in the following text, with the requisite equations
and diagrams, of course, but flagging along the way the key issue we were facing, which we now
know to call data engineering. But first, I have to tell you a story about structural engineering.

On 28 April 1988, a Boeing 737-200, operated by Aloha Airlines, experienced an explosive decom-
pression and structural failure at 24,000 feet, while en route from Hilo to Honolulu, Hawaii [19].
Approximately 18 feet of the cabin skin and structure aft of the cabin entrance door and above the
passenger floor line separated from the airplane during flight. One flight attendant was sucked out
during the decompression; seven passengers and one flight attendant received serious injuries. As
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a result of the accident, the airplane was determined to be damaged beyond repair. It was disman-
tled and sold for parts and scrap. There’s a terrible made-for-TV movie about the incident called
“Miracle Landing” starring Connie Sellecca, Wayne Rogers, Ana Alicia, and Nancy Kwan. The
special effects are really hokey, so I’m quite surprised to see that the movie was awarded the 1990
Primetime Emmy Award for Outstanding Individual Achievement in Special Visual Effects. The
National Transportation Safety Board determined that the probable cause of this accident was the
failure of the Aloha Airlines maintenance program to detect the presence of significant disbonding
and fatigue damage which ultimately led to the failure of the lap joint at S-10L and the separation
of the fuselage upper lobe. They emphasized the great importance of encouraging further research
into improved corrosion detection and prevention methods, and to employ methods that minimize
human performance inadequacies. I take that to mean that the goal is automated interpretation of
NDT measurements.

Military and civil aircraft, ships, waste-storage reservoirs, and railway tank cars are subjected
to in-service stresses and harsh environmental conditions, which eventually leads to corrosion,
cracks, delaminations, fatigue, etc. Different defects grow with different speeds and reach their
critical states at different times, so periodic inspections are scheduled, tailored for the particular
application.

The most common ultrasonic inspection routine uses point measurements in a pulse-echo or
through-transmission mode to estimate variations of material properties with depth at a given loca-
tion [20]. This uses longitudinal and/or shear bulk waves and can achieve very high resolution at
high frequencies. For large areas, however, the ultrasonic transducer must be scanned over the
entire region to map the structure. This conventional method, while very effective for small parts
becomes rather time consuming and mechanically cumbersome for field inspection of large struc-
tures. To save time, inspection is typically carried out at selected locations, thus increasing the
probability of missing a flaw. There often isn’t much data engineering involved because the back
wall or any delamination in a doubler will give a sharp reflection and that peak is easy to identify.
Time delay then gives the thickness or depth of delamination.

Our work has included the development of an alternative ultrasonic inspection technique that
is optimized for large area plates, pipes, and shells and is capable of assessing structural integrity
quickly and efficiently. We make use of ultrasonic Lamb waves propagating along the plate, pipe,
or shell for large distances, exploiting wave properties that are very different from those of bulk
waves. Data engineering is key to interpreting these waves because a Lamb wave is a combination
of coupled longitudinal and vertical-shear motions in the xz plane, and there are symmetric and
antisymmetric families of Lamb waves with corresponding dispersion behavior. At any given fre-
quency, in general, several modes can propagate, each having a different phase velocity. The higher
the frequency, the more modes coexist in the plate, and their phase velocities converge to the com-
mon limit, which is the velocity of the Rayleigh surface wave (Figure 5.1). All of this means that
the key barrier to practical use of Lamb waves for structural health monitoring is being able to
automatically identify subtle changes in arrival times of complex, multimode signals, which are
each dispersive in particular ways. The wave packets distort as they propagate, and the different
parts of the wave packets have different group velocities and the various Lamb wave modes inter-
act with different types of structural flaws in different ways. It’s a delightfully complex set of data
engineering issues.

An often underappreciated aspect of data engineering is the data acquisition step(s), which usu-
ally includes choices about transducers. This strikes me as strange because such choices affect the
data quality and character in such profound ways. Feel free to skip ahead and come back to this
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section later, though. There hasn’t really been much in the way of new transducer/technique devel-
opment in the last 25 years7 except that the electronics cost/size has plummeted precipitously. We
all have lots of expensive equipment that we keep in our labs as decoration or memorabilia. The
property control folks still come around every so often to scan the equipment tags, though, because
they have everything in their databases according to the original procurement price.

There are a great variety of techniques to generate Lamb waves. The simplest and the most
widespread method uses normal or shear contact transducers. If the excitation pulse is broadband
enough, it can simultaneously generate several distinct modes at different frequencies, although
the energy of the initial pulse is distributed between these modes unequally. It may happen that
the mode of interest receives only a small fraction of the input energy, while undesirable modes
dominate and complicate the measurement process.

Variable incidence-angle methods require either a contact wedge or an immersion tank to couple
ultrasonic bulk waves into the plate at a chosen angle. Variable incidence angle creates preferable
conditions for a particular mode and suppresses the others. This mechanism is based on Snell’s
law for refraction because the phase velocity Vph of the expected Lamb waves propagating in the x
direction satisfies the relation Vph = VL∕ sin 𝜃 with VL the longitudinal velocity in the wedge mate-
rial and 𝜃 the incidence angle in the wedge. Since each mode has a different phase velocity Vph at
a given frequency 𝜔, one can select the desired mode by tuning the angle 𝜃. It is worth noting that
the above is true only for plane wave incidence [7]. Real wavefronts emanating from transducers
are not planar and have some variation of incidence angles.

Comb transducers can create a specified phase displacement pattern on the surface of the plate
to excite the desired mode with a given phase velocity at a given frequency. When all elements
in the array are equally spaced and connected to the same source (in phase), the excited guided
wave will have the same wave length as the transducer spacing [3]. If the elements are connected
to different sources with appropriate phase shifts, it is possible not only to control the wavelength
of the resulting guided wave but also to make it propagate in a preferred direction [21–23]. The last
effect is achieved due to the interference between waves, created by different parts of the array. As
a result, the excitation energy is used more efficiently and the wave can propagate further, which
is very important in many large-scale pipe and plate inspection applications.

Air-coupled transducers are capacitive devices vibrating under alternating voltage and emitting
ultrasound waves into air. Due to the large acoustic impedance mismatch between gases and solid
materials, air-coupled transducers require specialized electronics with very high voltage pulsers
and narrow-band, high-gain amplifiers. The total reflection losses can exceed 120 dB [24] and man-
ufacturers must use sophisticated combinations of matching layers in order to receive signals with
acceptable signal-to-noise ratio. Current advances in technology have made it possible to overcome
these limitations and manufacture air-coupled transducers capable of performing most general
inspection tasks including generation and detection of Lamb waves.

Electromagnetic-acoustic transducers (EMATs) exploit the principle that an electromagnetic
wave incident on the surface of an electrical conductor induces eddy currents within the skin
of the conductor [25]. A typical EMAT consists of a large magnet to produce the external field

7 Dr. Alfred L. Broz’s 40 year career in nondestructive evaluation was with the US Army and the FAA. For the last
decade of service as Chief Scientist, he was proud to note that there were no fatalities in transport aircraft in the
United States. Dr. Broz attended St. Thomas University in St. Paul, MN, the South Dakota School of Mines for his
Masters, and earned his PhD in Physics at Notre Dame. I remember, in particular, a conversation with him at the
QNDE Conference in Golden, CO, where he articulated that there was nothing new anymore, but he agreed with
my assertion that automated interpretation of results was a new thing. We didn’t know to call it machine learning
back in 2004.
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and a high-frequency coil to induce eddy currents in the sample skin. By varying the mutual
orientation of the coil, magnet and the sample, it is possible to excite both normal and shear
displacements in the sample. No couplant is required for the regular operation of EMATs, but the
low signal-to-noise ratio and need for large magnets to excite useful levels of ultrasonic signals
limits their practical application. In addition, EMATs work only with ferrous metal samples. They
have been used extensively, however, for pipe and rod inspection, where the geometry allows for
the efficient excitation of guided waves.

Laser ultrasound is a fully noncontact method of Lamb wave excitation [26–28]. It uses periodic
heating of the sample surface with a chopped, or Q-switched laser beam, thus generating thermal
transients. Harmonic heat expansion and shrinking occurs in the target region and gives rise to
ultrasonic waves. Using laser beams, it is possible to select both the desired mode and the direction
of the resulting Lamb wave in a way similar to contact periodic arrays. Although very elegant and
noncontact, the laser generation method has several significant drawbacks. One of these is the low
excitation efficiency; high-intensity laser radiation can cause permanent damage to the sample.
Laser-based methods are attractive because a single scanned laser transmitter can be substituted
for a whole array of piezoelectric transducers, but the receiving part of the equipment is costly to
implement.

5.4.1 Tomography Overview

Our early work on Lamb wave tomography explored both reconstruction geometries and associ-
ated tomographic algorithms in order to find a balance between reconstruction fidelity and prac-
tical measurements [29–35]. In the parallel scheme, employed in the first generation of medical
CAT-scanners [36, 37] a single transmitter and a single receiver step in tandem to complete one
projection. The sample, or apparatus, then rotates to take another projection and the whole process
is repeated until projection angles cover the interval (0, 2𝜋). A more efficient fan beam geometry,
implemented in third-generation CAT scanners, contains one transmitter and an array of receivers
distributed uniformly along a circular arc. This scheme is much faster since rotation of the sample is
the only mechanical motion involved. The so-called crosshole geometry [38, 39], widely employed
in geophysics and seismology, uses two linear arrays of transmitters and receivers which are placed
into boreholes and then all possible combinations of rays are recorded by the principle “one send
all receive.” Employing a four-sided perimeter array of transmitters and receivers is what we call
the double-crosshole scheme.

For all scanning geometries, the accuracy of any reconstruction method strongly depends on the
spatial density of the “rays” penetrating the object. In general, higher image quality is observed
in well-covered central regions, while poorly illuminated peripheral areas suffer from noise and
reconstruction artifacts. In addition, the task of tomography can be reduced to the reconstruction
of the object from its Fourier spectrum, and the latter should not be undersampled. In other words,
the directions of wave vectors should cover the range (0, 2𝜋) as densely and as uniformly as possible.
However, these two requirements hold together only for the parallel projection geometry, where the
ray density and the wave vector directivity pattern are uniform. In addition, while the wave vector
coverage for the fan beam scheme is complete in a global sense, both the local directivity pattern and
the ray density are nonuniform throughout the region. For the single crosshole geometry, even the
global wave vector coverage is rather poor and limited by the minimum and maximum possible ray
angles. Moreover, even well-covered regions [38] may have rays with a very limited range of angles,
resulting in very poor resolution of structures that are oriented perpendicular to the raypaths for
X-rays and parallel to the raypaths for ultrasound, respectively. This lack of local angular coverage
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qualitatively changes the situation from a well-constrained imaging problem to one where there is
no unique solution even if an infinite amount of perfectly noise-free data with an infinitely small
sampling interval were available, which it isn’t.

Originally, all tomographic reconstruction algorithms were based on the assumption of straight
rays connecting the transmitter and receiver positions. This assumption is valid for X-rays
propagating in biological tissues and can, in principle, hold for ultrasound in nonrefractive
media. However, the majority of interesting defects do scatter ultrasound and reconstruction is
more properly done via diffraction tomography. Weak spatial variations in the index of refraction
result in bending of ray paths, thus calling for ray tracing algorithms to describe their complex
behavior. Reconstruction of strong scatterers requires inversion of the wave equation that can, in
general, only be approximated. Lamb waves introduce additional complications because they are
multimode and dispersive. Simple peak-detecting schemes are ineffective.

5.4.2 Fan Beam Tomography

The convolution-backprojection algorithm proved to be successful in reconstructing plate defects
from the projections acquired with the Parallel Projection scanning technique. A source-receiver
pair linearly scans over the length of a projection, then rotates and scans the next projection
until the entire circle is covered. The method requires rotation of either the sample or the
transmitter–receiver assembly, which is slow and mechanically cumbersome. This worked beau-
tifully in the laboratory for small samples, but is impractical to realize in field conditions when
large objects are being scanned, with near real-time requirements for the data acquisition process.

In the “fan-beam” scheme, widely used in medical imaging [37], the projections are generated
by a single transducer emanating a fan-like beam which is recorded by a bank of receivers.
Usually, the receivers are located either along the arc centered at the transmitter at equiangular
intervals, or are equally spaced along a straight line. The transmitter–detector assembly is rotated
to measure projections at corresponding angles. The data-collection procedure is much faster
than in the parallel case, but mechanically moving parts are still present in the system unless a
complete ring of transducers is used.

Image reconstruction from fan beam projections is very similar to that from parallel projections,
except for some small changes in the algebra. The whole reconstruction algorithm is described by
Kak and Slaney [40]. You might also like the book by Devaney [41]. They recommend convolving
the result with an additional smoothing filter to enhance the reconstruction quality.

We started working on fan beam tomography because of the possibility of using a circular perime-
ter array of transducers capable of both transmitting and receiving ultrasound. In this arrangement,
transducers are equally spaced along a circle, which would be free from mechanically moving parts
and could be implemented for scanning large areas with Lamb waves. In the proof-of-concept lab-
oratory setup (Figure 5.10), the receiving transducer R moves along the circular arc of radius r
centered at O. The line OR is actually a rigid arm geared to a stepper motor. The scanning angle
𝛾 = ∠ROK is the angle between the central ray TK of the fan beam and the current direction of the
arm OR. It is desirable to make the opening angle of the fan beam 90∘ having the holder arm OR
sweep the whole 180∘. In this case, the best-covered area, or the circle formed as an intersection of
all fan beams, will be exactly embedded into the image square with side a = |OR| ⋅√2. This recon-
struction image will also have the biggest possible size because it is, in turn, embedded into the
transducer array circle.

If we ignore both ray bending and diffraction effects and use a straight ray assumption for
image reconstruction, the ray length can be determined as the distance between transmitting
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(b)(a)

Figure 5.10 Fan beam tomography reconstruction for a 25-mm, 50% thickness flat-bottom hole in an
aluminum plate (a) and photo of the fan beam scanner in W&M NDE lab (b). The radius of the artifact-free
circular area is 56 mm due to the geometric limitations of the fan beam method, which makes the technique
rather impractical.

and receiving transducers. We use this to correct experimental data for changing ray lengths,
something that’s not an issue for X-ray CT of humans because there’s essentially no attenuation of
the X-rays in the air surrounding the patient.

Before committing to the expense of a circular array of transducers, we mimicked its behavior
using a single transmitter–receiver pair, implemented in a custom fan beam scanner (Figure 5.10).
The scanner is mounted on a support bar and consists of a static arm and a motor-controlled swing
arm rotating about the geometrical center. The source and receive transducers are mounted on both
arms at equal distances from the center of rotation. The transducers are equipped with small foot-
print delay lines and are spring-loaded to ensure good coupling with the sample plate. The sample
is placed on the rotary table under the arm assembly. The swing arm is worm-geared to a stepper
motor and can sweep through an arc of specified opening angle to complete a single fan beam pro-
jection. Additional projections are acquired by incrementing the rotary table holding the sample.

The most important parameter to be extracted from the digitized waveforms is the arrival time
of the fastest mode. This time depends upon the presence of any defects and, obviously, upon the
distance between transmitter and receiver. We therefore need to detect the rather small variations
in arrival time which carry the information about defects. The reconstruction in Figure 5.10 shows
very good quantitative correspondence with the defect size, but the usable fill factor is limited by
the area of the overlapping fans.

We were unable to obtain a satisfactory reconstruction image for an Al plate with five through
holes. According to the single projection data, we should have been able to get a satisfactory result
at least for the filtered data. But instead of three separate holes, we got a large dark spot covering
almost the entire image area. The reason could be an inability of that version of the reconstruction
program to resolve more than one spatially separated defect, that is, the assumption of straight rays
breaks down. It also seems obvious that there’s some scattering effects coming into play here.

5.4.3 Double Crosshole Tomography

Parallel projection and fan beam algorithms both belong to the convolution-backprojection
family, which requires strictly determined scanning configurations and is very sensitive to any
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Figure 5.11 Explanation of the ART algorithm for the double crosshole geometry (a) a – distance between
transducers; pixels (m, n) are indexed as shown; ray enumeration order (i, j) is different for different
projections. Photo of the crosshole scanner in our lab is at (b).

incompleteness or noise in the experimental data. The algebraic reconstruction technique (ART)
provides a solution for the problem of recovering an object from its projections, without many
of the geometric constraints inherent in the convolution-backprojection methods. What makes
it useful for Lamb wave tomography is its iterative nature and its great flexibility which allows
practically any scanning geometry and incomplete data sets.

For the sake of clarity, we will briefly describe the four-legged crosshole geometry ART algo-
rithm for our particular scanning setup as shown in Figure 5.11. Circles are the transducer posi-
tions, which can all be occupied by transducers in the case of a perimeter array of transducers.
In our laboratory implementation, only two positions are occupied at a time since we use a single
transmitter–receiver pair. Both transducers are attached to linear slider screws and can be moved
back and forth using two stepper motors controlled by the computer. The transmitting transducer
steps along the lower edge from left to right incrementing i from 0 to N − 1. The receiving trans-
ducer slides along the upper edge sweeping all N available j-positions for a fixed i. For each relative
position, the whole wave train is recorded and stacked into a data file. After N2 measurements, the
first crosshole projection is complete. We then move the transmitter down from the upper left cor-
ner and move the receiver up and down along the right side. Again, N2 measurements complete the
second projection. The increased number of crosshole projections is the only difference between
the double- and the single-projection crosshole geometries.

The ray density is critical to the reconstruction quality. It can be increased by increasing the
number of transducer locations per side, which could be rather expensive in the case of an array.
Alternatively, one can measure additional data using the available setup. For example, two more
crosshole projections can easily be obtained by swapping transmitting and receiving transducers.
Furthermore, transmitting from one and receiving on the other three sides of the rectangle would
provide additional valuable information and also increase ray density. The optimal solution is to
be able to take data in both directions along the rays connecting any two points on the square
(Figure 5.11). This could be accomplished by having a perimeter array of multiplexed transducers,
but is much harder to realize when the perimeter is covered by moving transducers mechanically.
We, therefore, typically limited ourselves to acquiring only two mutually orthogonal crosshole
projections.
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As we have seen (Figure 5.11), each ray can be assigned two coordinates i, j. For each projection,
i, j ∈ [0,N). The resulting square image can be divided into cells (pixels) in an arbitrary fashion,
but the simplest way is to make the square pixel side length equal to the transducer step size a.
This will preserve all the information contained in the data. Each pixel in the resulting matrix has
unique coordinates m,n ∈ [0,N) starting from the lower left corner. Each ray[i, j] crosses a certain
number of pixels on its way from transmitter to receiver. The term “ray” actually stands for the
path the Lamb wave travels in the medium (plate). These paths are straight lines if the plate is
made of isotropic homogeneous material. If some anisotropy or defects are present the paths will
differ from straight lines and generally will be curved in some complex fashion. It is obvious that
in the latter case, the arrival time of a particular Lamb wave mode and the pixels it travels through
will differ from those in the straight ray assumption. To take ray bending effects into account and
thus to improve the resolution of reconstruction methods, Lamb wave diffraction tomography is
needed.

For the chosen scanning geometry, the total number of equations in a single-crosshole projec-
tion equals N2, where N is the number of transmitter positions. In our experiments, for example,
we often use N = 100. To avoid the direct inversion of such a large matrix, the less computationally
intensive iterative ART is commonly used. The ART algorithm updates pixel velocities ray-by-ray
leading to the so-called “salt-and-pepper” noise [40] in the resulting image. To eliminate it, at each
iteration one can first calculate the updates for all the rays and only then update all the pixel veloci-
ties simultaneously. The modified method is called simultaneous iterative reconstruction technique
(SIRT).

After measuring the first set of crosshole projections as shown in Figure 5.11, we place the
sliders along the other two opposing sides and record the second set of projections, which we call
double-crosshole tomography. Each set of crosshole projections results in a stack of N2 5000-point
waveforms, which needs to be processed in order to extract one or several values of interest
from every waveform. Although fairly robust, our time extraction algorithm produced various
estimation errors ranging from fractions of the quarter-wavelength to complete failure to detect
signal. Fortunately, the percentage of severe errors is small enough (1%), so that the entire data
set is not fatally distorted. In addition, we correct the aforementioned failures by substituting
out-of-range data points with values of their closest neighbors. However, the algorithm runs well
on experimental data and produces satisfactory images.

It was surprising to us that the straight ray assumption, used in both reconstruction algorithms,
worked well even for the through holes. Lamb waves definitely diffract around the hole, and
their arrival time increases. Assuming straight paths, the reconstruction algorithm interprets that
increase as a wave slowdown and assigns smaller velocity values to some (often wrong) pixels. As
a result, the shape and the exact size of the defect may be distorted upon reconstruction and the
image cannot always serve as a velocity map. A method is needed that naturally incorporates ray
bending effects into the reconstruction process. Diffraction tomography is one such method.

Visual comparison of the reconstruction quality of the ART algorithm vs. SIRT shows
(Figure 5.12) that the latter always yields much smoother picture and shows fewer artifacts than
the former. The “salt-and-pepper” noise, specific for the ART, is completely absent on the SIRT
images. The run time and memory usage are approximately the same for both algorithms. There-
fore, it seemed sensible to use SIRT and its derivatives as a primary reconstruction algorithm in
subsequent imaging. The ART algorithm can also be utilized for revealing reconstruction artifacts
and using this information, improve the images, obtained with SIRT. The spatial resolution of
both methods is good enough to ensure subjective visual separation of all the defects studied. In
the case of two flat bottom holes, the imaging artifact slightly complicates this.
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Figure 5.12 Sequential ART reconstruction of two circular flat-bottom holes in aluminum plate (top left).
Defect diameters: 29 and 25 mm. Distance between centers: 53 mm. Image size: 200 × 200 mm. f = 1.2 MHz.
Note the level of “salt-and-pepper noise” throughout the image. Next is for sequential ART reconstruction of
five equally spaced 15 mm-diameter through-holes in aluminum plate. Note the level of “salt-and-pepper
noise” and distorted shape of the holes near the edges. Third image is for a rectangular thinning in
aluminum plate and the right image is for an oblong thinning region in aluminum plate. SIRT
reconstruction of the same four samples (bottom). Image size: 200 × 200 mm. In all cases, we used a thin
layer of water along the transducer scan paths for coupling purposes. The transducers were equipped with
cone-shaped delay lines made of acrylic resin. The footprint diameter of the delay line was 2 mm.

5.4.4 Arrival Time Determination

Buckle in please. When you do research for a living you never quite know what combination of
events might kick off a new and fruitful line of inquiry, causing you to be inadvertently on-trend
many seasons hence. First, I’m going to tell you a story or three and then I’ll tell you in some detail
how we began to systematically solve a new class of problems. It will also provide an opportunity
for us to remind ourselves that the whole point of understanding the mathematics and physics of
wave propagation and scattering is so that we can design more effective measurement schemes and
better interpret measured signals of various types.

The ultrasonographic periodontal probe development project, which I took on as a favor for
my colleagues at NASA, presupposed that ultrasonic A-lines could be automatically interpreted
because in the dental office, they do not do ultrasound imaging at all. Preclinical work on pre-
served cadaver jaws turned out to be misleading because those are all rubbery (and gross), whereas
for living tissues, the backscattering from the bottom of the periodontal pocket is far too subtle for
simple peak-detection approaches to work at all. The economics and workflow of a typical dental
office meant that these complex backscattered signals had to be automatically interpreted in real
time. This spurred us to develop time-frequency and time-scale representations of time-domain
signals so that image processing approaches could be brought to bear and then image features
could be used for machine-learning determination of periodontal pocket depth. See Figure 5.13.
At the same time, we were working on a novel concept to diagnose and localize treatments for
prostate cancer using 3D ultrasound. Actually, the system used two 3D ultrasound probes, one was
a trans-rectal probe and the other was a trans-urethral probe. Two probes meant that we could go to
higher frequency in order to get better resolution, and both probes were scanned under computer
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Figure 5.13 Two investigational ultrasound devices we developed based on concepts patented by John
Companion. Left is an ultrasonographic periodontal probe (US5755571A), which uses pulse-echo to
measure the distance from the gum line to the crest of the periodontal ligament. Right is a dual-probe
prostate cancer detection prototype (US5282472A) in use at the Walter Reed Army Medical Center urology
department, which performs computer-controlled 3D scanning with both trans-rectal and trans-urethral
ultrasound probes. For both of these, the key technical challenge is automatic interpretation of the
ultrasound signals to identify the anatomical variations of interest. See [9] for details, or [42] if you prefer
the fictionalized version.

control, so when we found something suspicious in the ultrasound signals, we would know with
certainty the 3D location, and then the robotic biopsy subsystem could accurately sample the tissue
there. Yes, there was a special chair involved. Although it was the 1990s and we didn’t use the term
machine learning, it was a straight machine learning play. As it turned out with the periodontal
probe project, our clinical partners never quite got us the training data necessary to do machine
learning. That’s a common problem and it’s always very frustrating.

When Dr. Keun Jenn Sun8 was doing Lamb wave scanning at NASA, he had a clever piece
of analog hardware called a pulsed phase-lock loop (P2L2) which accurately determined subtle
arrival-time changes in Lamb waves that indicated thickness variations, disbonds, scattering, etc.
As we were writing a sequence of SBIR proposals to get non-NASA funding so he could keep his
NASA funding, one of our collaborators put in the concept of tomography while revising a previous

8 Keun Jenn Sun was born in Keelung, Taiwan, but immigrated to the United States to complete his master’s degree
at the University of Ohio-Akron in 1979 and Doctoral studies in physics at the University of Wisconsin-Milwaukee
in 1986. He then moved to Virginia to take a position at the NASA Langley Research Center, where he continued to
work on and off for 21 years. Dr. Sun specialized in Lamb wave detection of flaws in aging aircraft structures. In his
spare time, he enjoyed tending to his large fish tanks and cultivating the backyard of his home, where he raised a
family and lived for 19 years. He was modest by nature but consistently insightful, reliable, sincere, and just as both
a father and a husband. Keun passed away on 8 August 2007.

Dr. Sun was among a group of NDE scientists at NASA Langley who were funded via annually-renewed
contracts at W&M, so when I arrived here in 1993, we co-mentored students and collaborated on Lamb wave
research. The contractors’ cheese all got moved when the NASA administrator decreed that procuring scientific
research staff via contracts was bad, despite there not being enough civil-service slots to deliver the needed
workscope. Contractors could only be funded by NASA if they had a tiny bit of other funding, and they could only
come to work at NASA every day if they had an office at their home institution. We allocated shared desk space for
them all on campus, and set about writing proposals to other agencies to fund a portion of their time. After a few
tries, an SBIR proposal was funded based on some of Dr. Sun’s Lamb wave research and we moved the equipment to
our new building on campus a day before the government shut down and access to NASA facilities was barred for
several weeks. NASA did cut the funding for all the on-site contractors.
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proposal. Sometimes you have to revise and resubmit a few (or several) times before a proposal gets
funded, and the tomography was my collaborator’s part of the project, so I didn’t pay close attention
to those tasks. When he called to tell me that the proposal had been funded, he also told me that
he was moving to a new company so it turned out that I was on the hook to figure out how to make
Lamb wave tomography work.

We figured out that the crosshole tomography methods developed for seismology could be made
practical with parallel arrays of transducers, multiplexed to get the necessary crisscross pattern of
rays. We proposed that for Phase II of the project, which was funded. We mimicked the measure-
ment scheme in the laboratory with two linear slides and began collecting crosshole tomography
Lamb wave data. We immediately found that the P2L2 wasn’t going to work because the path length
straight across was too different from the diagonal paths, and the P2L2 would lose lock. We began
systematically collecting data and working to figure out how to automatically extract Lamb wave
arrival times from thousands of waveforms in near-real time. The modern term for this is data
engineering, which is very fashionable right now.

I assume that you’re still buckled in, so here we go. Lamb waves are inherently dispersive and
multimode, so finding their arrival time is more of a problem than in the more common bulk wave
case. In nondispersive situations the shape of the excitation pulse is preserved and finding the
arrival time of a particular echo is simply a matter of finding the position of its sharp front edge or
detecting the arrival time of a “peak” in the signal. Dispersion, on the other hand, means that the
propagation velocity of an elastic disturbance depends on its frequency. Because of the finite dura-
tion of the excitation pulse, its spectrum always contains frequencies within some band of varying
width. The traveling elastic disturbance can be treated as a superposition of harmonic waves of
different frequencies. Due to dispersion these waves propagate with different velocities, and the
resulting wave packet gets distorted with time. Its shape and length evolve, and determining the
arrival time is no longer a straightforward problem, especially for practical tomographic geome-
tries where the ray lengths vary considerably. It’s also often the case that the Lamb wave mode
that’s most of interest is neither the first-arriving nor the one with the largest amplitude.

Figure 5.14 shows theoretical arrival times computed as a ratio of the transmitter–receiver dis-
tance to the velocity of the S0 mode in the defect-free plate, along with the first part of a typical
experimental waveform. To compare the output of various time-delay estimation methods, we per-
formed two typical measurement sets on two aluminum plates. One plate was defect-free and the
other had a 25.4-mm-diameter 50% thickness reduction flat-bottom-hole in the middle. The data
were acquired in tomographic crosshole experiments with 40 transmitter and receiver positions.
For each plate, we recorded total of 1600 waveforms resulting from all possible transmitter–receiver
positions on a 2.23-mm-thick aluminum plate at a frequency of 1.2 MHz. The transducer step size
was 5 mm, and the distance between transmitter and receiver lines was 200 mm.

A variety of time-delay estimation algorithms were applied to these experimental data sets. We
then computed mean square errors between 1600-point sequences of experimental and theoretical
arrival times in a defect-free aluminum plate. The value of the mean square error served as an
independent measure of the performance of each algorithm.

One of the powerful time-domain detection methods is pattern matching. Given some signal-like
pattern, one can match it point by point against parts of the signal until a specified accuracy (or
minimum error) is reached. Using this technique some acceptable results were obtained [29–34].
Another popular way of finding similarities in different traces is to search for peaks of their
cross-correlation functions [43].
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Theoretical S0 arrival times in a defect–free Al plate
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Figure 5.14 Theoretical arrival times of the S0 mode in a defect-free aluminum plate (a). To generate this
pattern the source-receiver distance was changed the same way as in our crosshole scanner. Typical shape
of the leading edge of the fastest mode is shown at (b). It is often difficult to accurately find the beginning
of the wave packet. Bottom plots show arrival times in a defect-free aluminum plate (c) obtained with
adaptive pattern matching method. Comparison with theoretical times yields MS error 𝛿ms = 2.74. At (d) are
arrival times in aluminum plate with 25.4-mm-diameter flat-bottom hole in the center, obtained with an
adaptive pattern matching method.

Figure 5.14 also shows the result of application of an adaptive pattern matching algorithm to the
test tomographic data set acquired on a defect-free aluminum plate and one with a flat-bottom hole.
The pattern length N in this case was chosen to be 400 points. Comparison with theoretical arrival
times for unflawed plates shows an MS error of 2.74. Although the method shows good potential in
tracking the arrival time of successive signals, it can be seen that its results often differ from their
expected values by several wavelengths.

The time domain pattern matching approach requires a great deal of empirical knowledge about
the signal of interest. For instance, to start the adaptive pattern matching algorithm, the operator
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must supply the hand-picked arrival time of the first signal in the set and use some theoretically
calculated arrival times to outline the search zone. We next considered a time-frequency approach
as a promising substitute to the pure time domain methods.

The idea behind time-frequency analysis is that the energy density spectrum tells us which fre-
quencies existed during the whole duration of the signal and no indication as to when they existed
[44]. A great variety of more or less successful methods have been developed to combine the time
and frequency domains of the signal into a more powerful and informative representation. The
advantage of a joint time-frequency representation would be the simultaneous knowledge about
the presence of particular frequencies in the signal and times at which those frequencies occur. So
far, no universal distribution, capable of handling different signals with equally good resolution,
has been constructed. All existing successful transforms are tailored to particular signals and our
purpose was to find one yielding enough resolution both in time and frequency domains for accu-
rate extraction of the features of interest from the recorded Lamb wave signals. Such a distribution
would combine the most useful information in both domains and simplify detection of the arrival
time of the event at a particular frequency.

In our tomographic experiments, we excited Lamb waves with a narrow-band tone burst and
the first received arrival is a wave packet composed of the amplitude-modulated central carrier
frequency. The spectrum of such a packet has a sharp maximum at the carrier frequency. The
part of the signal before the first arrival would not contain that frequency. Using an appropriate
time-frequency algorithm, it is possible to determine the time when the carrier frequency enters
the signal spectrum – that is, the signal arrival time.

The simplest time-frequency representation can be constructed by means of a moving-window
Fourier transform. The window of a fixed size moves along the signal and at each step, its content
is Fourier transformed to determine which frequencies existed in that time interval. Narrowing
the window to a certain extent increases the resolution in time, but for very short windows the
spectrum becomes meaningless because of the increasing bandwidth of the short signals.

The window size in the moving-window Fourier transform cannot be made arbitrarily small
without affecting the bandwidth of the corresponding part of the signal. The time resolution limit
of a spectrogram will therefore be equal to the size of the smallest window capable of reliably
detecting the carrier frequency. Such a detection is possible only when the part of signal within
the window includes at least one complete period at a carrier frequency. At 1 MHz such a period
T will be T = 1

f
= 1𝜇s. A typical value for the phase velocity of the S0 mode in aluminum in our

experiments is 𝑣ph = 3.8 mm∕𝜇s. Hence, if the distance between transmitter and receiver changes
by 0.26 mm, the phase of the wave shifts 2𝜋 or one period. The best temporal resolution of the spec-
trogram in our case is equivalent to that when the transmitter–receiver distance randomly changes
by ±0.26 mm. Of course, for better frequency resolution, the real window must be wider than just
one temporal period.

The low temporal resolution of a spectrogram forced us to look for alternative distributions,
which would be capable of handling our signals. The Wigner distribution [44] is the prototype
of distributions that are qualitatively different from the spectrogram.

The Wigner distribution does not belong to a class of positive distributions because it is not
positive throughout the time-frequency plane. In addition, it is not necessarily zero when the signal
is zero and at frequencies that do not exist in the signal spectrum. These phenomena are called
interference or “cross terms” and lead to numerous artifacts in the resulting two-dimensional
representation. Figure 5.15 demonstrates the signal typical for our experiments, its Fourier power
spectrum and the corresponding Wigner transform image. The cross-term artifacts show up
at frequencies higher than the peak frequency on the signal power spectrum. These artifacts
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Figure 5.15 Wigner transform of the signal (top). The power spectrum and original signal are shown
below. Note severe artifacts at frequencies above the carrier frequency, that is, the peak frequency on the
power spectrum.

complicate traversing the time frequency plane while looking for the signal arrival time. It would
be desirable, however, to reduce the level of cross-term artifacts and to speed up the computation
process. Straightforward numerical computation of the Wigner distribution of an N-point signal
requires N Fourier transforms. Although rather fast for one signal, this process becomes the major
bottleneck if many (tens of thousands) of signals are involved. In addition, the Wigner transform
needs higher sampling rate than the conventional DFT to avoid aliasing; its frequency resolution
is reported to be only a quarter of that obtained by DFT [45].

A successful attempt to adapt Wigner distribution to study the dispersion of Lamb waves is
described in [45]. This approach involves calculation of so called Wigner–Ville distribution, which
is a Wigner distribution of the analytic signal. The analytic signal is a complex signal, where
the real component is the original signal and the imaginary component is its Hilbert transform.
The Wigner–Ville transform reduces the sampling requirement to that of the Nyquist criteria. To
minimize the cross-term interference, the Wigner–Ville distribution is convolved with a Gaussian
window function. The resulting pseudo Wigner–Ville distribution is positive and much less noisy
than its predecessors. It was effectively employed in [45] for arrival time estimation and building
Lamb wave dispersion curves.

A very general and accurate delay estimation method for dispersive media was proposed by Her-
man [46], tested by Goudswaard et al. [47], and further developed by Ernst and Herman [48]. The
method called generalized traveltimes is based on an error norm, related to the phase of the wave-
field. To avoid the cumbersome step of interpreting arrivals, it computes phase “traveltime” as a
logarithm of the Fourier transform of the signal part cut around a theoretically guessed time of
flight, simplifying the task and making it almost automatic.

The authors of [48] comment that no single traveltime can be associated with the direct guided
wave due to its dispersive nature. Since each frequency travels with a different phase velocity, the
traveltime of a certain event also varies with frequency, leading to a dispersive 𝜏(𝜔). The definition
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of generalized traveltimes is both an intuitive and physically correct approach to group velocity in
dispersive media. We adapted it to Lamb wave tomography and studied its performance on the two
test data sets.

After testing the performance of these and various other techniques,9 we reached maximum
accuracy and speed with a time domain group delay estimation method. The method determines
the time delay of the leading edge of the envelope of the fastest mode and requires well-filtered
signals with distinctive first arrivals. The arrival times extracted with the method yield the lowest
MS error when compared to the theoretical ones. Another success criterion is the quality of the
tomographic reconstruction. Most of the results of this work were obtained with time domain
group delay estimation methods, very efficiently handling Lamb wave signals typical to our
experiments.

Time-frequency analysis based on a custom-built positive distribution is a robust autonomous
method, although less accurate than the group delay method. It cannot compute time delay
with enough precision because of the uncertainty principle. However, it provides a reliable first
estimate of the arrival time that can be used as an input to more accurate algorithms if theoretical
prediction is a problem. The method is fast, highly insensitive to signal quality, and works
practically without human intervention. Using wavelet transform instead of conventional DFT
may improve time localization accuracy, as we’ll see later, after we’ve done some actual scattering
analysis. Nevertheless, the method of generalized traveltime is automatic, fast, and based on the
deep insight into the nature of guided waves and the concept of group velocity. Preliminary results
obtained with the method were promising, although not free from the DFT-specific uncertainty.
Both pattern matching and neural network approaches have been explored extensively within our
work. Although the results for some samples were quite satisfactory, we were unable to reach the
reliability and accuracy of our more successful methods.

I realize that was rather a long discussion, which you may or may not have cared all that much
about. I thought it was important to include at this point in a book about scattering because the
whole point of what we’re doing is utterly reliant on making sense of complex time-domain signals
out in the real world. As we’re about to see, acoustic, electromagnetic, and elastic wave scattering
is horrifyingly (delightfully) complex and making sense of complex signals is key to exploiting our
knowledge of subtleties in the scattering behavior. What used to be called signal conditioning or
filtering or preprocessing isn’t going to cut it anymore. We’re going to want to bring to bear much
more sophisticated data engineering approaches so that we can get the most out of the signals
that we have. It’s no longer good enough to have detected something-something. The charge these
days is to automatically process the recorded signals and various other ancillary data streams to
determine in near-real time exactly what, where, how big, and who that signal just scattered from.
Ideally, the data-engineering preprocessing steps will continue to work as the algorithms they’re
feeding into are improved. In our work, the next step was to relax the assumption that the Lamb
waves travel in straight lines, because we know full well that they scatter and diffract and reflect
and refract. It’s delightfully complex.

9 See [49] for many of the details. Drs. Eugene and Daryia Malyarenko both did their PhDs at W&M, and after the
birth of their second child naturally planned a trip home to Kiev to visit grandparents in September of 2002. They
had only planned on being gone for two weeks, but got stranded for several months because American consular
officials were being extra careful processing visas in the year(s) after 9/11. I remember my daughter bringing home
school assignments for their oldest so I could email them to Kiev. Science has been fully internationalized for
decades, but every so often distances and boundaries suddenly matter quite a lot.
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5.4.5 Curvilinear SIRT

As I may have mentioned, this is a book about scattering. We’ll get to that for real, I promise.
The aforementioned discussion about Lamb wave tomography assumed that the guided waves
travel in straight lines from source to receiver, but of course, that is a simplifying assumption.
Lamb waves will reflect and refract and diffract at any material discontinuity. It turns out that
we had enough to deal with accounting for distortions to the wave multimode packets via disper-
sion because the path lengths change so much in the practical tomography geometries. I should
mention again that this was a surprise to us three decades ago. In our early Lamb wave scanners
and our parallel-projection implementation of tomography, the separation between the transduc-
ers was fixed and we had a clever piece of analog hardware called a Pulsed Phase-Lock Loop (P2L2)
that very accurately tracked small changes in arrival time. When we tried to implement crosshole
tomography, the path-length changes were large enough the P2L2 would lose lock. That pushed
us to investigate software methods to track arrival times, which we have been doing ever since. We
eventually got to the point that we could automatically track arrivals of multiple modes in quite
complex Lamb waveforms. Feel free to peek ahead at Chapter 10 to see where our data engineer-
ing journey has led us. TL;DR: time-scale representations work even better than time-frequency
approaches.

Ray bending is a common feature of traditional crosshole tomography using seismic waves, par-
ticularly for layered media. The same thing happens for underwater sound applications where
temperature and salinity variations cause refraction. Since the result of our Lamb wave tomo-
graphic reconstruction is a slowness grid (which relates to thickness), the question is whether this
can be used as a starting point to improve reconstructions by accounting for refraction across grid
boundaries and hence ray bending. The answer turns out to be yes, and the reconstructions are
improved somewhat (Figure 5.16).

The curved ray SIRT is conceptually very similar to the straight ray one [35] except that it stores
all the ray data in memory instead of computing them analytically. It is indeed impossible to know
in advance the number of pixels the bent ray will cross as well as the lengths of the pixel segments
it will cut. We therefore have to compute these quantities for each traced ray and accumulate them
into a huge array. After the tracing of all the rays is completed, we invert the matrix using the same
ART or SIRT algorithm as for the straight rays. This means that reconstruction from curved rays
preserves all tomographic artifacts specific for a given data acquisition geometry and reconstruction
algorithm. In addition, refraction at defects often creates severe focusing or defocusing depending
on the difference in the wave speed inside and outside the defect. Due to these effects, the result-
ing ray density and wave vector coverage can become highly nonuniform throughout the scanned
area making the resolution of the reconstruction algorithm depend on the size and location of the
defects.

The degree of ray bending is determined by the size and properties of the smoothing mask. This
approach is not as artificial as it seems because the smoothed image can be treated as an ini-
tial guess for the slowness map. Lower degrees of smoothing leave artifacts that strongly distort
ray paths and make accurate tracing impossible. This is in some sense equivalent to the pres-
ence of strong scatterers for which the whole geometrical acoustics approach fails. On the other
hand, very high degrees of smoothing blur out defects and ray paths more closely resemble straight
lines.

As we developed an iterative tomographic procedure using both straight and curved ray SIRT to
reconstruct Lamb wave velocity maps for isotropic plates, we found that success of the ray tracing
approach strongly depends on the degree of smoothing of the image, reconstructed with a straight
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(a)

(b)

(c)

Figure 5.16 Aluminum plate with two circular thinnings (a), five through holes (b) oblong thinning (c).
In each, the center image is straight ray SIRT and the right image is curved ray SIRT. Image size:
200 × 200 mm.

ray SIRT. Changing this degree affects the size of the reconstructed defects, but it is possible to
find optimal smoothing conditions where defect dimensions will be reconstructed correctly. At the
same time, ray bending always distorts the uniformity of the ray density and introduces additional
artifacts into the final image. This distortion, however, is proportional to the size and severity of the
defect. It does not occur for smaller defects and can be minimized even for larger ones by sufficient
smoothing of the input image.

The double-crosshole reconstructions are improved somewhat if we also include all the diagonal
raypaths from adjacent legs of a square array. The six projection crosshole geometry has high and
uniform ray density plus broad local wave vector directivity pattern throughout the scanned area
to insure satisfactory resolution over the entire image.

Once we automated the arrival-time extraction algorithms, we were able to further double-down
on the amount of data via a “walking toneburst” scheme where we transmit at each source location



162 5 Guided Waves

Frequency-thickness

Fastest mode

Next 2 modes

Slower modes

(nondispersive)

G
ro

u
p

 v
el

o
ci

ty

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 Figure 5.17 A sequence of tonebursts at increasing
frequencies are transmitted, and the characteristic
changes in arrival times with frequency-thickness for
the fastest, middle, and slower modes are used to
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[50]/with permission of Leonard, Kevin Raymond.
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Figure 5.18 A three-legged transducer array allows for tomographic reconstructions, with the many
crisscross paths having the highest ray density precisely where it is needed to inspect the steel rebar for
corrosion.

a sequence of toneburst signals where the center frequency covers a group velocity hump as shown
in Figure 5.17. Having recognized that because Lamb waves in pipes and tanks follow the curva-
ture, we can consider them to be rolled-up plates and thus the crosshole tomography geometry can
be implemented with either circumferential belts of transducers or meridional (linear) arrays of
transducers. Criss-cross patterns then become helical rays, but the reconstruction algorithms map
over directly. Here are two other applications that we have considered. Figure 5.18 shows a concept
to inspect the rebar in a commonly occurring steel-reinforced concrete bridge structure. The steel
takes up the tensile bending stresses because concrete only withstands compression well, so the
cylindrical steel scatterers are toward the bottom of the beam. This three-sided crosshole tomog-
raphy geometry has been well developed in seismology, although here the rebar is likely to scatter
quite strongly and that will need to be accounted for.

When a new “acoustic camera” technology became available,10 this caused us to think about
how it could be exploited for tomographic imaging. Figure 5.19 shows a concept for breast cancer
screening. A single large transducer emits an ultrasonic fan beam, which is recorded by the 2D
array of sensors in the acoustic camera. The mechanism is rotated similar to a CT scanner to make
3D reconstructions of the uncompressed breast without ionizing radiation.

10 https://www.imperiuminc.com/the-acoustocam.

https://www.imperiuminc.com/the-acoustocam
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Ultrasonic camcorder array

Frontal

view

Transmitter

Fan beam emitted
by the transmitter
passes through the
breast, which is in
the water-filled
scanning chamber

Fanbeam

Figure 5.19 Woman leans over scanner (left) with breast suspended into scanning chamber. Water fills
chamber and provides medium for ultrasound propagation in a through-transmission fanbeam tomography
geometry. All data recording and computer processing of signal are automatic.
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6

Scattering from Spheres

The same approach that we took to analyze the reflection and refraction/transmission of waves at
planar boundaries can be done for a variety of geometries. The “algebra” will be more complicated,
of course, but we’ll be fine as long as we do that algebra carefully and don’t panic about the so-called
special functions that will show up. That’s not to minimize the complexity of what we’re about to
do, though. We will end up with really complicated mathematical expressions that we won’t be able
to just look at and deduce the wave scattering behavior. Instead, we’ll have to rely on computers of
some sort to evaluate the expressions and show us the behavior. I’m old enough to remember when
that was really hard, but now the trickiest part is usually typing the expressions correctly.

6.1 Clebsch–Mie Scattering

When I was a graduate student, theoreticians and experimentalists and those who used computers
were distinct personages. The senior scientist who had the office next to me at the Air Force was
developing new integral equation methods for electromagnetic scattering, which is a numerical
approach to scattering, but he didn’t have a computer of any sort on his desk. He had an assis-
tant who did the numerical work for him. My advisor had a collaborator in another state who
did the numerical aspects of their research, and they collaborated primarily by mail and phone.
Thirty years ago, it would have been rather unusual for an experimental apparatus to be computer
controlled in the sense we think of it today, so experimentalists didn’t really use computers either.
Needing a computer-literate collaborator in order to make a plot from your data or equations strikes
all my students these days as quite funny, even though I sometimes ask them to make a plot for me.
Scientists also had people to type for them back in those days, and the best typists could take your
literal cut-and-paste and scribble-and-whiteout draft and turn it into a perfectly typed technical
manuscript because the IBM Selectric typewriter had interchangeable balls to do both text and
symbols. Personally, I’ve never had a secretary who typed as well as me and I have always written
my own equations and grunted my own code to make my own plots. Turning output into a 3D plot
took quite a long time on computers in the 1980s, BTW.

It’s best if you can derive your own equations and program your own computers and collect your
own data. You spend a lot less time waiting on collaborators to get back to you with their stuff. Often
it turns out that some or all of the data you might need is readily available, and experimentalists
will be happy to collaborate with you so they don’t have to try to slog through all the math. When
you’re choosing problems to attack, it’s also a good idea to consider questions that have practical
and even commercial importance.

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.
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In 1908, Gustav Mie1 investigated the scattering of light from spherical particles in an attempt to
explain the colors produced by colloidal gold suspensions, specifically the colors of stained glass
[1]. Mie theory, as it’s now called, gives the exact solution for the optical effects of spherical parti-
cles and provides a first-order approximation of the effects from nonspherical particles. Explaining
the colors of stained glass was of practical interest, and there was ample experimental data for Mie
to compare his results to. It was a problem that a number of great minds had attacked, but without
satisfactory results. The new electromagnetic theory of light turned out to be much better suited
than the rather unwieldy elastodynamic theory of the æther, which didn’t quite work. The mathe-
matical tools necessary had recently been worked out as well so Mie sucked it up and did his own
computations, which must have been quite onerous. Once you’ve got the problem set up, though,
it’s a rather straightforward boundary value problem to solve, as we’ll see later. L.V. Lorenz did that
algebra well before Mie, but he published it in Danish more than a century before the internet, so
Mie wouldn’t have known about his paper.

Doing a literature review before Google scholar was a tedious process, which I kind of miss. I had
mad photocopy skills back in the day. I still have three-ring binders full of photocopies of the early
Mie scattering papers all the way back to the 1860s. When I traced things back to Clebsch’s foun-
dational paper and gingerly photocopied it, I noticed on the card in the pocket of that volume that
the last person to check it out was Nelson Logan, so I’m going to quote the introductory paragraphs
of his review paper, “Survey of Some Early Studies of the Scattering of Plane Waves by a Sphere,”
which he published in 1965 [2]:

On October 30, 1861, A. Clebsch (1833–1872) completed a 68-page memoir [3] in which
he developed the mathematical theory required to solve (by the method of separation of
variables) the class of boundary-value problems in which a wave propagating in an elastic
medium impinges upon a spherical surface. This paper could have become the cornerstone
upon which future generations of scientists could base their theoretical studies. Scores of
writers since Clebsch have sought to increase our understanding of this class of problems.
However, the mathematical ingenuity of this master craftsman was doomed to lie buried
within the pages of one of the leading mathematical journals of the middle of the 19th cen-
tury while later writers rediscovered the results which were to be found in Clebsch’s paper.

The same fate was to befall the equally great memoir [4], upon the reflection and refraction
of light by a transparent sphere, which was published in 1890 by L. Lorenz (1829–1891).

My read of the historical situation is that A. Clebsch set up the problem and L. Lorenz solved
it, but G. Mie (1868–1957) got credit for it. Note that Clebsch and Lorenz were at the end of their

1 Gustav Mie was a professor of physics with a strong background in mathematics. After moving to the University
of Greifswald in North-Eastern Germany, he became acquainted with colloids, and one of his PhD students
investigated the scattering and attenuation of light by gold colloids experimentally. Mie used his previously acquired
knowledge of Maxwell’s equations and solutions of very similar problems in the literature to concisely treat the
theoretical problem of scattering and absorption of light by a small absorbing sphere. He also presented many
numerical examples which explained all the effects that had been observed until then. Since all calculations were
done by hand, Mie had to limit his theoretical results to three terms in infinite expansions; thus, he only could treat
particles smaller than 200 nm at visible wavelengths. Mie’s paper had remained hardly noticed for the next 50 years,
most likely because of the lack of computers. It experienced a revival later and up to now it has been referenced
more than 4000 times, owing to the widespread use of Mie’s approach in sciences such as astronomy, meteorology,
fluid dynamics, and many others.

Gustav Mie did not consider his work on scattering of light by small particles as very important, since he just
tried to explain the effects which his students had observed. He concentrated on hot topics in theoretical physics, for
example, the theory of matter. He wrote several textbooks on relativity, gravitation theory, and electromagnetism.
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Figure 6.1 Problem geometry for scattering from a sphere.
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careers while Mie still had a long life ahead of him during which he could, as needed, remind people
that the answers they wanted were available in his 1908 paper and here let me send you a reprint.
Logan also points out that the essential mathematics of what we now call Rayleigh scattering was
published by Clebsch in 1869, but Rayleigh perhaps didn’t read German . . . .

There are innumerable treatments of the Mie scattering problem, that is, plane electromagnetic
scattering from a sphere, but I found the treatments by Born and Wolf [5] and Bohren2 and Huffman
[6] especially clear and concise so that’s more or less what I’m including here.

We consider a plane, monochromatic, electromagnetic wave propagating in a homogeneous,
isotropic medium (like, maybe glass) that is incident upon a spherical inclusion with finite con-
ductivity (like, maybe a gold particle). Figure 6.1 is a drawing of the problem geometry that I
programmed in LATEX in 1988. At the origin of our coordinate system, we have a sphere of radius
a which has different material properties from the surrounding medium. Call the region r > a
medium 1 and r < a medium 2.

Since we’re going to solve the problem in frequency domain, we will suppress the e−i𝜔t time
dependence, and write Maxwell’s equations as:

∇ × H⃗ = −i𝜔𝜖E⃗ ∇ × E⃗ = i𝜔𝜇H⃗ (6.1)

along with ∇ ⋅ E⃗ = 0 and ∇ ⋅ H⃗ = 0, where the wave numbers are

k1 = 𝜔

√
𝜖1𝜇1 k2 = 𝜔

√(
𝜖2 + i

𝜎2

𝜔

)
𝜇2 (6.2)

and we note that the finite conductivity of the scatterer turns out to be really important because
without accurate values for 𝜎2, the model won’t predict the colors of the stained glass. Now take
the curl of the first two of Maxwell’s equations and use my favorite vector identity

∇ × (∇ × A⃗) = ∇(∇ ⋅ A⃗) − ∇2A⃗ (6.3)

to get the vector wave equation for both E⃗ and H⃗

∇2E⃗ + k2E⃗ = 0 ∇2H⃗ + k2H⃗ = 0 (6.4)

Since we’re going to want a plane wave propagating in the z-direction, the incident wave solution
is

E(i)
x = eik1z E(i)

y = E(i)
z = 0 (6.5)

with the magnetic field components computed with Maxwell’s equation.
We’ll then assume appropriate functional forms for the scattered electric and magnetic fields

in region 1 (r > a) as well as in region 2 (r < a). Those solutions are going to be in spherical

2 Craig F. Bohren, Distinguished Professor Emeritus of Meteorology at Pennsylvania State University, is an
atmospheric scientist and physicist who wrote fundamental books on light scattering, atmospheric
thermodynamics, and radiative transfer, as well as popular science books on atmospheric optics such as “Clouds in
a Glass of Beer: Simple Experiments in Atmospheric Physics” in 1987.
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coordinates, of course. Don’t freak out. I’ll try to include the details here (and throughout) so you
can follow along without looking up esoterica in books you’d have to go borrow from some old-timer
like me because then you’re likely to end up having to sit through some long, boring story before
being allowed to leave with the book you need.

When my advisor died, I had the somber task of sorting through his three offices and deciding
which things to save and which to discard. I had earned my stipend as a first-year graduate student
by photocopying papers for him. He would make a check mark by the references he wanted in
a paper he was reading and I would go find them in one of the science libraries at Harvard and
photocopy them. He would make check marks by the references he wanted from those, etc. I wasn’t
even a student at Harvard, BTW, but I had a master key to the physics department there, so I could
get into the various libraries and copy rooms and such after hours. There was no swiping in with
ID cards back in those days. It was many dozens of bankers, boxes worth of papers. It took quite a
while.3

The boundary conditions for electromagnetic scattering are continuity of tangential electric and
magnetic fields, applied at the surface of the scatterer (r = a). Since I made you read through an
anecdote, I owe you all the mathematical details. Spherical coordinates are related to Cartesian
coordinates by

x = r sin 𝜃 cos𝜙 y = r sin 𝜃 sin𝜙 z = r cos 𝜃 (6.6)

and the components of any vector A⃗ are transformed according to

Ar = Ax sin 𝜃 cos𝜙 + Ay sin 𝜃 sin𝜙 + Az cos 𝜃
A
𝜃
= Ax cos 𝜃 cos𝜙 + Ay cos 𝜃 sin𝜙 − Az sin 𝜃 (6.7)

A
𝜙
= −Ax sin𝜙 + Ay cos𝜙

We’re going to need the curl of a vector in spherical coordinates, which has the r, 𝜃, 𝜙 components

(∇ × A⃗)r =
1

r2 sin 𝜃

[
𝜕(rA

𝜙
sin 𝜃)

𝜕𝜃

−
𝜕(rA

𝜃
)

𝜕𝜙

]
(∇ × A⃗)

𝜃
= 1

r sin 𝜃

[
𝜕Ar

𝜕𝜙

−
𝜕(rA

𝜙
sin 𝜃

𝜕r

]
(6.8)

(∇ × A⃗)
𝜙
= 1

r

[
𝜕(rA

𝜃
)

𝜕r
−
𝜕Ar

𝜕𝜃

]
so that Maxwell’s curl equations can be written out as:

−i𝜔𝜖Er =
1

r2 sin 𝜃

[
𝜕(rH

𝜙
sin 𝜃)

𝜕𝜃

−
𝜕(rH
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]
−i𝜔𝜖E
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r sin 𝜃
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𝜕Hr
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−
𝜕(rH
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𝜕r

]
(6.9)

−i𝜔𝜖E
𝜙
= 1

r

[
𝜕(rH

𝜃
)

𝜕r
−
𝜕Hr

𝜕𝜃

]
3 I did get to keep all the books I wanted, though, and now they’re available to my own students to make good use
of. I recently realized that the copy of Born and Wolf [5] that I’ve had all these years was borrowed by my advisor
from Don Chodrow, who wrote his name in ink on the inside cover. I Googled him and found that he earned a PhD
in physics from Harvard in 1973, which explains how my advisor happened to have the book that has been here in
Virginia since 1993. It turns out that Dr. Chodrow was a professor at James Madison University, also here in
Virginia, for all these years, but he died in a car crash in 2012, so I’ve lost my chance to give him his book back.
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and

i𝜔𝜇Hr =
1

r2 sin 𝜃

[
𝜕(rE

𝜙
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𝜕𝜃

−
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]
These expressions will allow us to write boundary condition equations that ensure continuity of
the tangential (𝜃 and 𝜙) electric and magnetic fields at the constant coordinate surface r = a. But
first some math. It’s pretty mathy. Again. Don’t. Freak. Out. I’m going to include the details.

Since we know that∇ ⋅ E⃗ = 0 and∇ ⋅ H⃗ = 0, we can write both E⃗ and H⃗ as the curl of some poten-
tial function. Since we’re making some effort to revere Clebsch, let’s invoke Clebsch’s theorem,
which says that any vector can be written as the sum of two parts, one of which has no curl and the
other of which has no divergence. For this next step, the various books and papers are all over the
map on notation and such, but I’ll try to be consistent throughout this chapter. Kerker [7] included
a handy table in his book translating the notations used by various authors.

Let’s write things as:

E⃗ = ∇ × (rΠTM) H⃗ = 1
k
∇ × ∇ × (rΠTE) (6.11)

where the (scalar) potential functions ΠTM and ΠTE each satisfy the (scalar) Helmholtz equation

∇2Π + k2Π = 0 (6.12)

This is important because we know the solution to this equation in various coordinate systems,
including spherical. Separation of variables allows us to write

Π = R(r)Θ(𝜃)Φ(𝜙) (6.13)

which says that the general solution for Π is a product of three functions, which each only depend
on r, 𝜃, 𝜙, respectively. Those three functions each then have to obey the following ODEs:

d2(rR)
dr2 +

(
k2 − 𝛼

r2

)
rR = 0

1
sin 𝜃

d
d𝜃

(
sin 𝜃 dΘ

d𝜃

)
+

(
𝛼 − 𝛽

sin2
𝜃

)
Θ = 0 (6.14)

d2Φ
d𝜙2 + 𝛽Φ= 0

where 𝛼 and 𝛽 are separation constants. The third of these should look familiar to you. If not, make
the variable substitution of 𝛽 = m2, which we’re going to need to enforce single-valuedness anyway,
and I hope you’ll agree that the general solution for Φ(𝜙) is

Φ(𝜙) = am cos(m𝜙) + bm sin(m𝜙) (6.15)

where m is an integer. At this point, Born and Wolf say that the second ODE “is the well-known
equation for spherical harmonics.” I’ll expect you to nod knowingly about things like that and
maybe say, “Yes, of course.” Confidence is the key to bullshitting your way through such things.
You can Google shit later. In that vein, I’m sure you’ll also agree that a necessary and sufficient
condition for a single-valued solution is that 𝛼 = l(l + 1) where l > |m| is an integer.
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Most books will make a variable substitution at this point, such as 𝜉 = cos 𝜃, so that the second
ODE can be written

d
d𝜉

[
(1 − 𝜉2)dΘ

d𝜉

]
+

[
l(l + 1) − m2

1 − 𝜉2

]
Φ = 0 (6.16)

at which point you can say, “Oh, now I recognize it. It’s Legendre’s equation. My favorite!” if you
didn’t bullshit confidently enough at the previous step.

I didn’t do quite as well in my first differential equations class as I might have liked. It was taught
in a movie theater. The university had worked out a deal with a new multiplex on campus that
showed artsy movies at night, so that the auditoria could be used for classes during the day. The
snack bar wasn’t open during the day, though. There were chalkboards down front, of course, but
they were covered with curtains in the evening. The primary issue, was that the theater seats didn’t
have the fold-away writing surfaces for taking notes, which you certainly should do in something
like differential equations. Even if your brain is only half engaged, you need to have your pencil
trace out in your notebook most or all of what the professor’s chalk is doing on the board. There
was a box of little boards in the back that you could use if you wanted, but geez. Class attendance
was kind of sparse, except for the midterm when the professor walked in, plopped the pile of exam
papers down on the floor at the front of the single-aisle auditorium and said, “Come get your exams
and get started.” I don’t think he was thrilled at teaching in the movie theater across campus from
the math department, or maybe he wanted some Jujubes to chew on while we did the test. I sat
right down front for the rest of the exams, including the final where I didn’t do as well as I might
have because I was sick all finals week. I had to rest twice on my way to the differential equations
final. The student health center was way at the far end of campus, so it didn’t really occur to me to
go there instead.

Differential equations often have names. They’re named for mathematicians who studied them
to death and worked out their solutions. One of the things I remember from movieplex math is
that in some cases you simply guess the solution to an ODE. If that doesn’t work, you try a series
solution. For differential equations that are special enough to get named, their series solutions often
get the corresponding name and a symbol and Wikipedia pages. Hence, the solutions to Legendre’s
equation are the special functions named Legendre functions. Legendre and others have worked
out all the properties of Legendre functions. I recommend getting a copy of Abramowitz and Stegun:
Handbook of Mathematical Functions, which you can download or buy inexpensively in paperback
or swipe from the office of an oldster. For all the special functions you’re likely to come across in
your work, Abramowitz and Stegun will have the grown-up versions of the trig identities you’re
going to need. I buy copies for my incoming graduate students so they won’t steal mine. Most of
the pages of that book are tables of output, the idea being that you could check your computations
with the special functions against standards. Milton Abramowitz and Irene Stegun worked for the
National Bureau of Standards, which is now the National Institute of Standards and Technology,
so we can trust their numbers. In addition, this was one of the very few scientific activities of the
1950s led by a #girlboss.

Associated Legendre functions are what we’re going to use as our guess for Φ = P(m)
l (cos 𝜃) and

when m = 0, the so-called Legendre polynomial will be written as Pl(cos 𝜃). Abromowitz and Ste-
gun have plots of them for various values of l,m but Matlab et al. know all about special functions
these days so computing with them isn’t usually any more difficult than sinusoids.

We have one ODE yet to deal with. Born and Wolf suggest that we set

kr = 𝜌 R(r) = 1√
r

Z(r) (6.17)
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so that we can all instantly recognize our old friend, the Bessel equation

d2Z
d𝜌2 + 1

𝜌

dZ
d𝜌

+

[
1 −

(l + 1
2
)2

𝜌
2

]
Z = 0 (6.18)

which of course has Bessel functions for solutions. Duh. In particular, we want the half-order cylin-
drical Bessel functions R = 1√

kr
Z1+ 1

2
(𝜌), which are the spherical Bessel functions. There’s going to

be several Bessel functions, but let’s start with Bessel, Neumann, and Hankel which are related by

Hl(𝜌) = Jl(𝜌) ± iNl(𝜌) (6.19)

although some books insist on using Yl(𝜌) for the Neumann functions. The cylindrical Bessel func-
tions are typically written with capital letters, while the spherical Bessel functions are written with
the corresponding lowercase letters.

jl(𝜌) =
√

𝜋

2𝜌
J1+ 1

2
(𝜌) nl(𝜌) =

√
𝜋

2𝜌
N1+ 1

2
(𝜌) hl(𝜌) =

√
𝜋

2𝜌
H1+ 1

2
(𝜌)

There are also the Ricatti versions of each of these, 𝜓l(𝜌) = 𝜌jl(𝜌) and so on. That book you didn’t
think you needed has all their properties and relationships spelled out for you in a convenient place.

So the general solution to the scalar wave equation in spherical coordinates is a linear combina-
tion of sinusoids, Associated Legendre functions, and spherical Bessel functions. Recall that l and
m were integers, and we’re going to use the Ricatti Bessel functions because that will give us the
most compact answer at the end. There’s no way to know that at this stage of course, so I imagine
that Lorenz or Mie or whoever slogged all the way to the end and realized that if they were to go
back and make that simple substitution, their final answer would be much more elegant. In any
event, here’s the functional form of Ψ

rΨ =
∞∑

l=0

l∑
m=−l

[
am cos(m𝜙) + bm sin(m𝜙)

]
P(m)

l (cos 𝜃)
[
cl𝜓l(kr) + dl𝜒l(kr)

]
(6.20)

where there’s an r tacked on in order to make the equations work out better and𝜒l(kr) = krnl(kr). In
addition, am, bm and cl, dl are arbitrary constants. This general solution will be important because
the boundary value problem we’re about to set up will be constructed with functional forms that
follow this.

Recall that we are considering the case of a plane electromagnetic wave propagating in the
z-direction, polarized in the transverse direction. In spherical coordinates, this is going to be

Einc
r = eikr cos 𝜃 sin 𝜃 cos𝜙 Hinc

r =
√
𝜖

𝜇

eikr cos 𝜃 sin 𝜃 sin𝜙

Einc
𝜃

= eikr cos 𝜃 cos 𝜃 cos𝜙 Hinc
𝜃

=
√
𝜖

𝜇

eikr cos 𝜃 cos 𝜃 sin𝜙 (6.21)

Einc
𝜙

= −eikr cos 𝜃 sin𝜙 Hinc
𝜙

=
√
𝜖

𝜇

eikr cos 𝜃 cos𝜙

And then like magic we’re going to use Bauer’s formula

eikr cos 𝜃 =
∞∑

l=0
il(2l + 1)jl(kr)Pl(cos 𝜃) (6.22)

although Born and Wolf write𝜓l(kr)∕kr instead of jl(kr), which is equivalent. Hence, we know how
to write our incident plane wave in terms of spherical harmonics, except without referring to that
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book you still don’t really think you need your own copy of, there’s no chance in hell you’d know
to use the identities

eikr cos 𝜃 sin 𝜃 ≡ − 1
kr

𝜕

𝜕𝜃

(
eikr cos 𝜃)

𝜕

𝜕𝜃

Pl(cos 𝜃) ≡ −P(1)
l (cos 𝜃) P(1)

0 (cos 𝜃) ≡ 0

in order to get the incident transverse magnetic and transverse electric plane wave potentials

rΨinc
TM = 1

k2
1

∞∑
l=1

il−1 2l + 1
l(l + 1)

𝜓l(k1r)P(1)
l (cos 𝜃) cos𝜙 (6.23)

rΨinc
TE = 1

k2
1

√
𝜖1

𝜇1

∞∑
l=1

il 2l + 1
l(l + 1)

𝜓l(k1r)P(1)
l (cos 𝜃) sin𝜙 (6.24)

I assume you’re OK with sticking in factors of il or whatever inside the summation, or at least are
(convincingly) nodding knowingly that it will make things simpler down the road. I also assume
you’re saying loudly WTF? inside your head about the term 2l+1

l(l+1)
, which just showed up out of the

blue. It shows up because when you’re doing separation of variables, there are good and less good
choices for the separation constants. Let’s just go with it so we can get on to solving something.

When an incident plane wave impinges on the scatterer, it will give rise to a scattered field for
r > a and a transmitted field for r < a, which will all have to balance at r = a in order to satisfy
the boundary conditions of continuity of tangential electric and magnetic fields. In terms of the
potential functions, we write these four equations as:

𝜕

𝜕r
rΨinc

TM + 𝜕

𝜕r
rΨscat

TM = 𝜕

𝜕r
rΨtrans

TM (6.25)

𝜕

𝜕r
rΨinc

TE + 𝜕

𝜕r
rΨscat

TE = 𝜕

𝜕r
rΨtrans

TE (6.26)

k1rΨinc
TM + k1rΨscat

TM = k2rΨtrans
TM (6.27)

k1rΨinc
TE + k1rΨscat

TE = k2rΨtrans
TE (6.28)

which are evaluated at r = a. Obviously, the TM and TE problems can be dealt with separately.
First, however, we have to invoke some common sense. I hope you agree that the scattered field
has to spread out as it gets farther away from the scatterer, and furthermore that it has to decay
away to nothingness as r → ∞. That’s easy enough to accomplish if we choose spherical Hankel
functions for the scattered wave. In addition, the transmitted field inside the scatterer must be
finite, so we can’t use spherical Neumann functions for that because they are singular as r → 0.
We’ll put some unknown modal coefficients in each of the scattered and transmitted fields, so that
we’ll have something to solve for when we enforce the boundary conditions.

The scattered fields are written, with 𝜁l = 𝜓l ± i𝜒l, as:

rΨscat
TM = 1

k2
1

∞∑
l=1

(Δ1

Δ0

)
il−1 2l + 1

l(l + 1)
𝜁
(1)
l (k1r)P(1)

l (cos 𝜃) cos𝜙 (6.29)

rΨscat
TE = 1

k2
1

√
𝜖1

𝜇1

∞∑
l=1

(Δ2

Δ0

)
il 2l + 1

l(l + 1)
𝜁
(1)
l (k1r)P(1)

l (cos 𝜃) sin𝜙
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and the transmitted fields are

rΨtrans
TM = 1

k2
2

∞∑
l=1

(Δ3

Δ0

)
il−1 2l + 1

l(l + 1)
𝜓l(k2r)P(1)

l (cos 𝜃) cos𝜙 (6.30)

rΨtrans
TE = 1

k2
2

√
𝜖2 − i𝜎2∕𝜔

𝜇2

∞∑
l=1

(Δ4

Δ0

)
il 2l + 1

l(l + 1)
𝜓l(k2r)P(1)

l (cos 𝜃) sin𝜙

This looks worse than it is. We simply have to solve for the unknown modal coefficients,Δ0–Δ4, but
it’s two pairs of equations, so it’s just two equations with two unknowns, twice. In addition, there’s
this magical thing called orthogonality, which lets us ignore the summation and solve the equations
for each value of l. The quick-and-dirty explanation is that you multiply each of the equations by
Pl′ (cos 𝜃) and then integrate over 𝜃 to find that the answer is zero for all values of l′ ≠ l which kills
off the summation. It’s in that book. You should get a copy.

The grown-up way to solve a system of equations is via Cramer’s Rule, which is why I wrote
the unknown modal coefficients as Δ’s. In case you kind of zoned out with all the math I just
inflicted on you, here’s where we are. We used Bauer’s formula to write the incident plane
wave in terms of spherical Bessel functions and associated Legendre functions and sines and
cosines. We used common sense to pick functional forms for the scattered and transmitted
fields, which were zero at infinity and finite at the origin, respectively. We were careful to
use k1, etc. for r > a and k2 etc. for r < a because the scatterer is a different material (like a
metal) than the surrounding glass or whatever. We apply the boundary conditions of tangential
electric and magnetic fields, but the TM and TE cases are orthogonal, which is obvious if you
notice that the former has cos𝜙 while the latter has sin𝜙 and those are orthogonal in sort of
the same way as the Legendre functions because if you integrate cos𝜙 sin𝜙 over 2𝜋 you’ll get
hard zero.

So then we do some algebra and find to our delight that the seemingly random factors that we
added to things along the way did, in fact, make the answers work out elegantly:

Δ0 = 𝜁 ′
(1)
l (k1a)𝜓l(k2a) − 𝜁 (1)l (k1)𝜓 ′

l (k2a)
Δ1 = 𝜓 ′

l (k1a)𝜓l(k2a) − 𝜓l(k1a)𝜓 ′
l (k2a) (6.31)

Δ3 = 𝜓l(k1a)𝜓 ′
l (k2a) − 𝜓 ′

l (k1a)𝜓l(k2a)

and so on for the TE case. Note that prime indicates differentiation with respect to argument for
the Bessel functions. The Δ’s give exact expressions for the scattered and transmitted fields, so you
can, if you want to, calculate the scattered and transmitted electric and magnetic fields. It’s a whole
lot easier than it was in 1908 because you don’t have to do it by hand. You also don’t have to find a
computer person to collaborate with because you can just carefully type the expressions into Matlab
or whatever and make some plots. What to plot is the question, of course.

Note that the size parameter of the scatterer k1a is a dimensionless measure of the size of the
scatterer compared to wavelength, and that matters a lot. If you plot things as a function of size
parameter, you’ll find quite a lot of variation. If you plot things as a function of direction, you’ll
also find quite often that small changes in size parameter or relative properties of the scatterer and
surroundings change things dramatically.

When you type in equations like this in order to make plots, it’s excellent practice to reproduce a
bunch of the standard results in textbooks and such that have stood the test of time. It’s so easy to
have one little typo and then have all your output be garbage. Generally speaking, the behavior is
too complex to look at it and tell whether it looks right or not.
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Figure 6.2 Absorption efficiency for various refractive indices vs. ka (a). Effect of refractive index on
backscatter gain as a function of ka (b).

Figures 6.2–6.5 are recreations of historic Mie scattering plots of various scattering parameters
such as absorption efficiency, backscatter, extinction efficiency, and total scattering for various
refractive indices m as a function of the size parameter, ka, where k is the wavenumber of the
incoming wave and a is the radius, for spheres [8]. The extinction efficiency is defined as the
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Figure 6.3 Backscatter gain for spheres with refractive index 1.61 (a) and 1.4821 (b).

sum of the absorbed and total scattering efficiencies. These scattering functions for a homoge-
neous sphere are dependent on its physical parameters such as optical size, complex refractive
index, and angle of observation. Generally speaking, the scattering efficiencies, Q, can be written
as Q = 𝜎

𝜋a2 , where 𝜎 is the cross section for the corresponding process. This cross section is the ratio
of the energy flux absorbed, backscattered, extinguished, or scattered in total by the particle to the
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Figure 6.4 Extinction efficiency of spheres for various values of refractive index as a function of ka (a). The
extinction efficiency is the ratio of the sum of the total scattering and absorption cross sections and the
geometric cross section (b).

incident energy flux density, that is, to the energy of incident electromagnetic wave per unit area
oriented normal to the wave front. The cross section is an area, while the efficiency coefficients
are dimensionless. Scattering cross sections are calculated by integrating the Pointing vector with
respect to angle.

As can be seen, the scattering behavior is highly size parameter dependent. Backscatter can
vary as much as a factor of 4 or so within tenths of a change in size parameter as depicted by
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Figure 6.5 The total scattering from selected real refractive indexes (m), showing that the further that m
gets from 1 the more fluctuation there is. The plots are vertically displaced to highlight the differences.
Replicates Kerker [7] Fig. 4.8. The black line is m = 1.01 displaced −1. The dashed line is m = 1.15,
displaced by −0.5. The dotted line is m = 1.33, and is not displaced. The dash-dot-dash-dot line is m = 1.5
and is displaced by +1. The gray line is for m = 2.105, is displaced by +2.0.

the spheres in Figure 6.3. Visually, this MATLAB implementation of Mie’s influential scatter-
ing solutions agrees well with the historic plots computed by H. C. Van De Hulst and Milton
Kerker.4

For most people these days, their instinct would be to simply make plots of the scattered field
surrounding the scatterer. Perfectly understandable, except for the question of what exactly it is
that you’re going to plot and then the follow-on question of what that means. Recall that Mie’s
motivation was explaining the colors of stained glass, and that it required finite conductivity of the
metallic particles in the glass to explain it.

The first step to explaining the colors of stained glass is to assume that the scattering by any single
sphere is representative of the collective behavior of multiple spheres because multiple-scattering
is really, really complicated. The good news here is that if the concentration of scatterers is dilute
enough, this single-scattering approximation works pretty well. We’re going to just go with that.
The second step is to understand that as the light travels through the glass, some energy is removed
due to scattering and some is removed due to absorption via the finite conductivity of the scatterers.
So what we have to calculate is energy lost due to scattering and absorption.

The radial component of the complex Poynting vector is

S∗
R = 1

2
(

E
𝜃
H̃
𝜙
− E

𝜙
H̃
𝜃

)
(6.32)

4 Milton Kerker was a world-renowned expert in aerosol and colloid science, a leading researcher in the use of light
scattering to study aerosols and colloids. Author of over 200 papers, he is probably best remembered for coauthoring
the book “The Scattering of Light and Other Electromagnetic Radiation.” He was also a pioneer in
surface-enhanced Raman spectroscopy and an excellent teacher and graduate student and postdoctoral mentor. He
was a United States Army Veteran serving from 1942 to 1945 and was awarded the Bronze Star. See Hopke et al. [9].
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and because outside the sphere we have

E⃗ = E⃗
inc

+ E⃗
scat

H⃗ = H⃗
inc

+ H⃗
scat

(6.33)

we can write

S∗
R = 1

2

(
Einc
𝜃

H̃inc
𝜙

− Einc
𝜙

H̃inc
𝜃

)
+ 1

2

(
Escat
𝜃

H̃scat
𝜙

− Escat
𝜙

H̃scat
𝜃

)
+1

2

(
Einc
𝜃

H̃scat
𝜙

+ Escat
𝜃

H̃inc
𝜙

− Einc
𝜙

H̃scat
𝜃

− Escat
𝜙

H̃inc
𝜃

)
(6.34)

Now draw about the scattering sphere, a concentric spherical surface of radius b > a. The real
part of S∗

R integrated over the surface of this sphere is equal to the net flow of energy across its
surface. The total energy absorbed by the sphere is then

Wa = −ℜ
∫

𝜋

0 ∫

2𝜋

0
S∗

Rb2 sin 𝜃d𝜙d𝜃 (6.35)

and therefore we write

Wa = −1
2
ℜ

∫

𝜋

0 ∫

2𝜋

0

(
Einc
𝜃

H̃inc
𝜙

− Einc
𝜙

H̃inc
𝜃

)
b2 sin 𝜃d𝜙d𝜃

−1
2
ℜ

∫

𝜋

0 ∫

2𝜋

0

(
Escat
𝜃

H̃scat
𝜙

− Escat
𝜙

H̃scat
𝜃

)
b2 sin 𝜃d𝜙d𝜃 (6.36)

−1
2
ℜ

∫

𝜋

0 ∫

2𝜋

0

(
Einc
𝜃

H̃scat
𝜙

+ Escat
𝜃

H̃inc
𝜙

− Einc
𝜙

H̃scat
𝜃

− Escat
𝜙

H̃inc
𝜃

)
b2 sin 𝜃d𝜙d𝜃

The first integral measures the flow of energy in the incident wave and the second measures the
outward scattered energy

Wscat =
1
2
ℜ

∫

𝜋

0 ∫

2𝜋

0

(
Escat
𝜃

H̃scat
𝜙

− Escat
𝜙

H̃scat
𝜃

)
b2 sin 𝜃d𝜙d𝜃 (6.37)

The sum of the absorbed and scattered energy removed from the incident wave, called extinction,
is given by the third integral

Wext = −1
2
ℜ

∫

𝜋

0 ∫

2𝜋

0

(
Einc
𝜃

H̃scat
𝜙

+ Escat
𝜃

H̃inc
𝜙

− Einc
𝜙

H̃scat
𝜃

− Escat
𝜙

H̃inc
𝜃

)
b2 sin 𝜃d𝜙d𝜃 (6.38)

Doing these integrals isn’t so terrible if you happen to know that

∫

2𝜋

0
sin2

𝜙d𝜙 =
∫

2𝜋

0
sin2

𝜙d𝜙 = 𝜋 (6.39)

∫

2𝜋

0
sin𝜙 cos𝜙d𝜙 = 0 (6.40)

∫

𝜋

0

⎡⎢⎢⎣
(

P(1)
l (cos 𝜃)

sin 𝜃

)2

+ 𝜕

𝜕𝜃

(
P(1)(cos 𝜃)

)⎤⎥⎥⎦ sin 𝜃d𝜃 = 2[l(l + 1)]2

2l + 1
(6.41)

∫

𝜋

0

P(1)
l (cos 𝜃)

sin 𝜃
𝜕

𝜕𝜃

(
P(1)(cos 𝜃)

)
sin 𝜃d𝜃 = 0 (6.42)

which are magic orthogonality relations conveniently found in a book I might have mentioned a
time or three. Doing the integrations and normalizing, we end up with the scattering and extinction
cross sections5

5 Part of the reason it’s important to benchmark your code against well-established results is to make sure that
you’ve gotten the equations correct. Every author seems to use a slightly different notation and you’re never going to
be absolutely sure that you’ve gotten all the little things correct. I just walked over to my lab and found Don
Chodrow’s copy of Born and Wolf to see if I had gotten all of the factors correct in the cross sections. I’m pretty sure,
but their (119) is written in a slightly different way because they have written the Δ’s slightly differently from me.
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Qscat =
4

(k1a)2

∞∑
l=1

(2l + 1)
||||Δ1

Δ0

||||
2

(6.43)

Qext =
4

(k1a)2 ℜ
∞∑

l=1
(2l + 1)

(Δ1

Δ0

)
(6.44)

The extinction efficiency, Qext, is the fraction of the incident energy that’s removed due to scatter-
ing plus absorption for a single scatterer, but if the suspension is dilute enough, the total energy
reduction is just proportional to this, that is, you multiply by the volume density of the scatterers
or some such thing. The point for Mie is that you can plot Qext as a function of k1a for a given set of
sphere parameters (permeability, permittivity, and conductivity) and see how the different colors
of light are muted. Since white light contains all colors, to get red stained glass you would need to
scatter and absorb the other colors. As long as you don’t have to do the computations by hand, it’s
pretty straightforward to use this model to “design” whatever colors you want.

I feel like after all those equations, I somehow owe you an anecdote about stained glass. If you’re
ever in Boston and you take a Duckboat tour or whatever, one of the stories you’ll hear is about
purple windowpanes on Beacon Hill. Across from the Boston Common, up the hill a bit from the
Cheers bar, there’s some rather expensive real estate. In a few windows, there are a few panes of
accidentally pale purple glass.6

Back in the 1800s, when the glass was shipped over from France, it arrived crystal clear. But
soon after, the windows’ exposure to sunlight resulted in a violet tint, thanks to an excess
of manganese oxide in the glass. This, of course, was hugely upsetting to homeowners at
the time.

But since the glass was in the homes of snooty upper-class Bostonians, all the wannabees wanted
purple glass too. The problem was the glass company didn’t know what they had done to make
the purple glass and didn’t yet know how to compute Mie scattering cross sections, so they went
bankrupt trying whatever they could think of to purple up their glass. The remaining purple win-
dowpanes are highly prized. In addition, Duckboats are wicked pissah!

6.2 Acoustic Scattering from a Sphere

Next, let’s consider the simplest closed-body 3D scattering problem in acoustics, a plane wave scat-
tering from a fluid sphere. It could be an air bubble in water or a liquid drop in air or an oil drop in
water or whatever. The solution will be perfectly general, except that the incident wave is a plane
wave and the scatterer is a sphere and, of course, we’re not going to include viscosity at this stage.7

6 https://www.bostonmagazine.com/property/2019/02/12/where-to-find-purple-windows.
7 Victor Anderson was born to missionary parents in Shanghai, China, on 31 March 1922. He enrolled at the
University of California, Los Angeles as a graduate student in physics in 1946. After a year in residence at UCLA, he
joined the University of California’s Marine Physical Laboratory (MPL) at Scripps. His research at MPL in the study
of the deep scattering layer completed the requirements for a PhD, which he received in 1953. The following year,
Anderson was granted a postdoctoral fellowship at the Acoustics Research Laboratory at Harvard University in
Cambridge, Mass. While at Harvard, he designed and developed a digital time compression technique (DELTIC) for
application to acoustic signal processing. Anderson returned to Scripps’ MPL in 1955 and continued his research in
the field of acoustical signal processing and ocean engineering. Topics of his research included the spatial and
temporal distribution of acoustic ambient noise in the ocean and development of the remote underwater
manipulator (RUM). In addition, he invented the digital multibeam steering system (DIMUS), a computationally

https://www.bostonmagazine.com/property/2019/02/12/where-to-find-purple-windows
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You may or may not have just read the preceding section on Mie scattering. This is the exactly
equivalent problem in acoustics, and I’ve tried to include all the details so you won’t have to refer
back to the previous section if you don’t want to. It’s a slightly different version of things, so that
might even turn out to be helpful if some of the previous sections didn’t quite do it for you.

My friends who do electromagnetic scattering consider acoustics to be merely a scalar version
of electromagnetics, and thereby think themselves somehow superior to acousticians [10–12]. My
friends who do acoustic scattering snort derisively about the linear nature of Maxwell’s equations
as compared to the inherently non-linear Navier–Stokes equations. I generally keep my politics to
myself so I can work with whoever happens to be in power, and if I were inclined to offer com-
mentary and/or advice on the issues of the day I would do it via a carefully curated sock puppet
[13, 14].

Electromagnetic waves are transverse waves, so they are vectorial; acoustic waves are
longitudinal waves, so they are scalar. As we’ll see, elastodynamic waves have both transverse and
longitudinal modes, so they are mathematically more complicated than either electromagnetic
or acoustic waves. That’s why the elastodynamic theory of the æther was dropped as soon as
Maxwell’s unified theory came along.

At the origin of our coordinate system, we have a sphere of radius a which has different material
properties from the surrounding medium, just as in Figure 6.1. Call the region r > a medium 1 and
r < a medium 2. We start with linearized equations of motion, continuity, and state for an acoustic
medium:

𝜌0𝜕t𝑣 + ∇p = 0 (6.45)

𝜕t𝜌 + 𝜌0∇ ⋅ 𝑣 = 0 (6.46)

∇p − c2∇𝜌 = 0 (6.47)

where 𝜌0 is the constant density, 𝜌 = 𝜌(r⃗, t) is the perturbative density, p, 𝑣 and c stand for pressure,
velocity vector, and speed of sound, respectively.

These equations are valid both in medium 1 and in medium 2 and will allow us to write down the
general form of the solution both inside and outside of the sphere. We’ll then enforce the boundary
conditions at r = a to solve for unknown modal coefficients. What we’re about to do is called a
“forward” solution because we’ll specify both the incident wave field and the details of the scatterer
and then solve for the scattered field that develops due to the presence of the scatterer. The “inverse”
problem is when both the incident and scattered fields are known (to some extent) and the goal is
to solve for the details of the scatterer. In simple terms, for the forward problem we know what
we send in and know what’s there, and then we solve for what comes back out. For the inverse
problem, we know what we send in and know what comes back out, and we then want to figure
out what’s in there. Forward scattering models are often quite helpful when trying to solve inverse
problems, but it’s not as simple as using the forward model predictions to match up to measured
scattered fields and thus know what the scatterer is. I argue these days that the forward scattering
solutions can be helpful in identifying signal features that can be formed into feature vectors in a
machine learning paradigm for attacking inverse problems [15].

efficient approach for preferentially listening in many directions at once. It is used in sonar systems on U.S. Navy
ships and submarines. Anderson served as deputy director of MPL from 1976 until his retirement in 1989. Anderson
was the recipient of the National Security Industrial Association’s 1986 Admiral Charles B. Martell Technical
Excellence Award for his work in the development of the DIMUS system. He also received the Navy’s 1976
Distinguished Public Service Award.



6.2 Acoustic Scattering from a Sphere 183

Since the incident field is known and the scattered field is unknown, let’s be careful to note that
the total acoustic field in the region r > a is the incident plus the scattered field. Inside the scatterer
r < a is the transmitted field. Since the boundary conditions for acoustics are that the normal fluid
velocity and the pressure must be continuous across the interface, we’ll have the following two
boundary condition equations at r = a:

𝑣
inc
r + 𝑣scat

r = 𝑣
trans
r (6.48)

pinc + pscat = ptrans (6.49)

Since the velocity is an irrotational vector field ∇ × 𝑣 = 0, we can introduce a scalar function such
that the velocity is proportional to the gradient of that function. We write

𝑣 = − 1
k2 ∇𝜓 (6.50)

where k = 𝜔∕c is the wave number and we’ve inserted the factor of −1∕k2 for later convenience.
Actually, that’s a bit of a fib. The real story goes something like: after a lot of painful algebra, we
might eventually figure out that the final expressions would have turned out a lot simpler if we had
thought to insert a factor of −1∕k2 in front of the velocity potential when we initially defined it.

We consider an incident plane wave of unit amplitude propagating in the z-direction, which gives

𝑣
inc
z = eikz

𝑣
inc
x = 𝑣

inc
y = 0 (6.51)

and in spherical coordinates, we write

𝑣r = eik1r cos 𝜃 cos 𝜃
𝑣
𝜃
= −eik1r cos 𝜃 sin 𝜃 (6.52)

𝑣
𝜙
= 0

In terms of the vector potential, we thus have

𝑣r = − 1
k2

(1
r
𝜕

𝜕r
− 1

r2

)
(r𝜓)

𝑣
𝜃
= − 1

(kr)2
𝜕

𝜕𝜃

(r𝜓) (6.53)

𝑣
𝜙
= − 1

(kr)2
1

sin 𝜃
𝜕

𝜕𝜙

(r𝜓)

Combining these and using Bauer’s formula

eix cos 𝜃 =
∞∑

l=0
il(2l + 1)jl(x)Pl(cos 𝜃) (6.54)

gives

r𝜓 inc =
∞∑

l=0
il(2l + 1)k1rjl(k1r)Pl(cos 𝜃) (6.55)

This is of the appropriate form because the general solution to

(∇2 + k2)𝜓 = 0

is a linear combination of the three types of functions

r𝜓 =
{

krjl(kr)
kr𝜂l(kr)

}{
P(m)

l (cos 𝜃)
Q(m)

l (cos 𝜃)

}{
eim𝜙

e−im𝜙

}
(6.56)

where the spherical Bessel and Neumann functions are
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jl(x) =
√

𝜋

2x
Jl+1∕2(x) 𝜂l(x) =

√
𝜋

2x
Yl+1∕2(x) (6.57)

and P(m)
l (cos 𝜃) and Q(m)

l (cos 𝜃) are the associated Legendre functions of the first and second kind.

Exercise 6.1 Do the aforementioned algebra to derive r𝜓 inc as written earlier, starting from
𝑣

inc
z = eikz.

The scattered and transmitted fields need to be written in an appropriate form that satisfies the
Helmholtz equation in spherical coordinates. There’s a bit of an art to this, but it’s not magic. I’ll
skip a bunch of the details and mathematical justifications, but don’t be too freaked out by the
“special functions” that we’re using because they aren’t really all that exotic. You may have noticed
that many equations are named for people, which you may have thought to be either kind of cool
or really pathetic. I have to assume it’s a point of honor among mathematicians to have an equation
or two named after them. I suppose it’s like an X-gamer having a trick named after them, which
also could be considered either cool or pathetic. Either way, it provides a shorthand for describing
the equations and/or tricks you’re trying to master.

Now think back to elementary school when you were into prealgebra and skateboarding.
Very often, the method that you were taught for solving equations was “guess and check.”
Now flash-forward to college when you first learned about ordinary differential equations, and
presumably had long since given up skateboarding. Your ODE professor probably didn’t call it
guess and check, but that’s more or less the way to attack differential equations because otherwise
you have to assume a series solution and grind out the answer that way. If you happen to grind
out the solution to some important new equation, two things will happen. You’ll get that equation
named after you, and your series solution will be given its own symbol(s), which will henceforth
be known as (insert your name here) functions. That’s where special functions come from. So far,
we’ve come across Bessel, Neumann, and Lengendre functions. There’s lots of them.

Back to our problem at hand. Note that the incident field, when expanded in spherical harmonics,
is a linear combination of Bessel and Legendre functions. That sum is only over l and is for m = 0,
which explains why the e±im𝜙 terms aren’t present. To guess at the forms for the scattered fields,
let’s write similar functional forms:

r𝜓 scat =
∞∑

l=0
C1k1rh(1)

l (k1r)Pl(cos 𝜃) (6.58)

r𝜓 trans =
∞∑

l=0
C2k1rjl(k2r)Pl(cos 𝜃) (6.59)

In these, I’ve included unknown modal coefficients C1 and C2, which we’re hoping to solve for
using the boundary conditions. For the angular part, I’ve used Legendre polynomials, Pl(cos 𝜃) =
P(0)

l (cos 𝜃), which is what the associated Legendre function is called when m = 0. For the radial
functions, I’ve used the spherical Hankel function of the first kind, h(1)

l (x) = jl(x) + i𝜂l(x), since that
function has the right mathematical property to make the scattered field behave like an expanding
spherical wave when r → ∞. I’ve also been careful to use k1 since the subscript indicates that we’re
talking about fluid 1. For the transmitted field, I have used the same angular function, but only
jl(x) for the radial function because 𝜂l(x) has the property that it’s infinite for all values of l when
x → 0. Both of those choices for the radial functions are pretty easy to justify because we’re trying to
model actual physical phenomena. The incident wave is of unit amplitude, so it makes good sense
that the field inside the scatterer will have to be finite, even if the scatterer does somehow focus



6.2 Acoustic Scattering from a Sphere 185

the waves or some such thing. The scattered field obviously has to die off as it expands out in 3D
space from a finite-sized scatterer, which is sometimes called the Sommerfeld radiation condition.
Similarly to the spherical Bessel and Neumann functions, the spherical Hankel functions of the
first and second kind are defined in terms of the corresponding half-order cylindrical functions:

h(1,2)
l (x) =

√
𝜋

2x
H(1,2)

l+1∕2(x) =
√

𝜋

2x
[
Jl+1∕2(x) ± iNl+1∕2(x)

]
(6.60)

The lowest-order spherical functions can be expressed in terms of sines and cosines as:

j0(x) =
sin x

x

j1(x) =
sin x

x2 − cos x
x

j2(x) =
(

3
x3 −

1
x

)
sin x − 3

x2 cos x

j3(x) =
(

15
x4 − 6

x2

)
sin x −

(
15
x3 − 1

x

)
cos x

𝜂0(x) = − cos x
x

𝜂1(x) = − cos x
x2 − sin x

x

𝜂2(x) = −
(

3
x3 −

1
x

)
cos x − 3

x2 sin x

𝜂3(x) = −
(

15
x4 − 6

x2

)
cos x −

(
15
x3 − 1

x

)
sin x

which is more or less how your mathematical software deals with them. The point is that you
can think of special functions like you do other functions which get their own buttons on your
calculator.

For small argument, sin x ≈ x and cos x ≈ 1, so we see that the Neumann functions are singular.
For large arguments hl(kr) ∼ eikr∕kr, which is an outgoing spherical wave. That’s why we chose the
radial functions for the scattered and transmitted fields the way we did.

The Legendre polynomial is the Associated Legendre function when m = 0 and if we use
x = cos 𝜃, the first few of them are

P0(x) = 1 P1(x) = x P2(x) =
1
2
(3x2 − 1)

These are orthogonal functions, which is why we have chosen m = 0 terms for the scattered and
transmitted fields. We can calculate the rest of the Legendre polynomials from the recursion
relation

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x)

and we can also write

P(m)
l (x) = (1 − x2)m∕2 dmPl(x)

dxm

to find the associated Legendre functions.
There are lots of excellent sources to look up the many and various properties of all the special

functions, but I still recommend the “Handbook of Mathematical Functions” by Abramowitz and
Stegun. Sometimes you can still find the old hardcover versions at used book sales and such, but
it’s also available in paperback from Dover. Or you can download it.

Now back to the scattering problem. We have velocity components in terms of𝜓 and we can also
write
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p = i𝜌c2

𝜔

𝜓 (6.61)

where we’ve dropped the subscript on 𝜌0 since we’re going to want to have subscripts that indicate
whether it’s the density of medium 1 or 2. The boundary conditions then become[

1
k2

1

(
1
r
𝜕

𝜕r
− 1

r2

)
− 1

k2
2

(
1
r
𝜕

𝜕r
− 1

r2

)
𝜌1c2

1 −𝜌2c2
2

]{
r𝜓 s

r𝜓 t

}
= −

{
1
k2

1

(
1
r
𝜕

𝜕r
− 1

r2

)
𝜌1c2

1

}
r𝜓 inc

To solve this system of equations, plug in the expressions for the r𝜓s as defined and take the
derivatives indicated. Then plug in r = a and solve the algebraic system by Cramer’s rule. After
doing that we find

C(1)
l = −il+1(2l + 1)

(Δ1

Δ0

)
(6.62)

C(2)
l = −il+1(2l + 1)

(Δ2

Δ0

)
(6.63)

where the three Cramer’s rule determinants are given by

Δ0 =
k2aj′l(k2a)

jl(k2a)
−
𝜌2

𝜌1

k1ah′
l(k1a)

hl(k1a)

Δ1 =
jl(k1)

hl(k1a)

{
k2aj′l(k2a)

jl(k2a)
−
𝜌2

𝜌1

k1aj′l(k1a)
jl(k1a)

}
(6.64)

Δ2 =
k2

k1

jl(k1a)
jl(k1a)

{
k1ah′

l(k1a)
hl(k2a)

−
𝜌2

𝜌1

k1aj′l(k1a)
jl(k1a)

}
where the prime indicates differentiation with respect to argument

j′l(x) =
𝜕

𝜕x
jl(x) h′

l(x) =
𝜕

𝜕x
hl(x)

and we note that for either jl(x) or hl(x)

fl−1(x) + fl+1(x) = (2l + 1)fl(z)∕x

lfl−1(x) − (l + 1)fl+1(x) = (2l + 1)f ′l (x)

(l + 1)fl(x)∕x + f ′l (x) = fl−1(x)

lfl(x)∕x − f ′l (x) = fl+1(x)

Exercise 6.2 Check to see that these results match those of V. Anderson [16]. Note the acknowl-
edgments where he thanks by name the two computers who made his plots.8

8 Computers usually labored in anonymity, rarely getting Wikipedia pages of their own. To wit, Creola Katherine
Johnson (née Coleman; 26 August 1918–24 February 2020) was an American mathematician whose calculations of
orbital mechanics as a NASA employee were critical to the success of the first and subsequent U.S. crewed
spaceflights. During her 33-year career at NASA and its predecessor, she earned a reputation for mastering complex
manual calculations and helped pioneer the use of computers to perform the tasks. The space agency noted her
“historical role as one of the first African-American women to work as a NASA scientist.” The Katherine G. Johnson
Computational Research Facility at NASA LaRC was dedicated 22 September 2017 with a ribbon-cutting ceremony
attended by family and friends of Johnson and her fellow “human computers,” students from Black Girls Code and
the 21st Century Community Learning Centers program, and special guests from across Virginia.



6.2 Acoustic Scattering from a Sphere 187

Now that we have solved the scattering problem, let’s derive some physical quantities of interest.
The energy flux vector is

⃗ = p𝑣 (6.65)

and if we consider the acoustic energy flow through a large spherical surface surrounding the scat-
terer, we want the radial component of this

r = p𝑣r (6.66)

The intensity of the scattered wave is the time-averaged radial component of the energy flux vector
for the scattered field

I = ⟨r⟩ = 1
2
ℜ(p𝑣∗r ) =

1
4
(p𝑣∗r + p∗

𝑣r) (6.67)

Let’s consider this point for a moment. A harmonic time factor e−i𝜔t is assumed in all fields, which
suggests that

𝑣(r⃗, t) =ℜ
[
𝑣0(r)e−i𝜔t]

= 1
2
[
𝑣0(r)e−i𝜔t + 𝑣∗0(r)e+i𝜔t]

because ℜz = 1
2
(z + z∗). Instantaneous values of any rapidly oscillating quantities can’t be

observed, but only their time average is taken over a time interval −T′ ≤ t ≤ T′, which is large
compared to the fundamental period T = 2𝜋∕𝜔. Now, the time-averaged ⃗ is given by

⟨⃗⟩ = 1
2T′ ∫

T′

−T′
p(r⃗, t)𝑣(r⃗, t)dt (6.68)

in which we use

p(r⃗, t) = ℜ
[
p(r⃗)e−i𝜔t] = 1

2
[
p(r⃗)e−i𝜔t + p∗(r⃗)ei𝜔t]

𝑣(r⃗, t) = ℜ
[
𝑣(r⃗)e−i𝜔t] = 1

2
[
𝑣(r⃗)e−i𝜔t + 𝑣∗(r⃗)ei𝜔t]

to get

⟨⃗⟩ = 1
2T′ ∫

T′

−T′

1
4
[
p𝑣e−2i𝜔t + p𝑣∗ + p∗

𝑣 + p∗
𝑣
∗e2i𝜔t] dt (6.69)

where the exponential terms drop out because

1
2T′ ∫

T′

−T′
e±2i𝜔tdt = 1

2T′
1

2𝜔
sin 2𝜔T′ = 1

8𝜋
T
T′ sin 2𝜔T′

and we have assumed that T∕T′
≪ 1. Hence we have

⟨⃗⟩ = 1
4
(p𝑣∗ + p ∗ 𝑣) = 1

2
ℜ(p𝑣∗) (6.70)

We also write

I = ⟨r⟩ = 1
2
ℜ(p𝑣∗r ) (6.71)

Intensities represent the radiation per unit solid angle and give a measure of the directivity of
the scattered acoustic energy. We’ll almost always divide the scattered intensity by the incident
intensity to write a differential scattering cross section

d𝜎scat

dΩ
= 1

(k1r)2

|||||
∞∑

l=0
(2l + 1)

(Δ1

Δ0

)
Pl(cos 𝜃)

|||||
2

(6.72)



188 6 Scattering from Spheres

In the backscatter direction this is

𝜎
b
scat =

||||| 1
(k1r)

∞∑
l=0

(2l + 1)
(Δ1

Δ0

)|||||
2

(6.73)

and integrating the differential scattering cross section over a spherical surface of radius r gives the
total scattering cross section as:

𝜎scat =
4𝜋
k2

1

∞∑
l=0

(2l + 1)
||||Δ1

Δ0

||||
2

(6.74)

which we sometimes normalize Qscat = 𝜎scat∕𝜋a2 to write

Qscat =
4

(k1a)2

∞∑
l=0

(2l + 1)
||||Δ1

Δ0

||||
2

(6.75)

Note that we have used the orthogonality of the Legendre polynomial to write

∫

1

−1
Pl(x)Pl′ (x)dx = 2

2l + 1
𝛿ll′

and that Pl(−1) = (−1)l.
For small scatterers, we can use small argument approximations for the spherical Bessel and

Neumann functions

jl(x) =
xl

(2l + 1)!!

{
1 −

x∕2
2l + 3

+
x4∕4

2(2l + 3)(2l + 5)
· · ·

}
𝜂l(x) = −(2l − 1)!!

xl+1

{
1 +

x∕2
2l − 1

+
x4∕4

2(2l − 1)(2l − 3)
· · ·

}
and we find

Qscat ≈
4
9
(k1a)4

⎧⎪⎨⎪⎩
[
𝜌1

𝜌2

(
k2

k1

)2

− 1

]2

+ 3
(

1 −
𝜌1

𝜌2

)2
/(

2 +
𝜌1

𝜌2

)2 ⎤⎥⎥⎦ (6.76)

which is the Rayleigh scattering result.
We can also consider special cases where we have: (i) an air bubble in water and (ii) a liquid drop

in air. For (i), we have 𝜌2 ≪ 𝜌1 and c2 ≪ c1, while for (ii) the opposite holds.
For the air bubble in water, we find

Δ1

Δ0
≈

jl(k1a)
hl(k1a)

(6.77)

and for the liquid drop in air, we find

Δ1

Δ0
≈

k1aj′l(k1a) + jl(k1a)
k1ah′

l(k1a) + hl(k1a)
(6.78)

Exercise 6.3 Show that the small-argument cross sections you get from these match with the
corresponding small-argument cross sections mentioned earlier.

Exercise 6.4 Derive the scattering cross section from the differential scattering cross section, and
the intensities from the scattered fields as given. Check my algebra for Δ0,Δ1, and Δ2.
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Exercise 6.5 Implement the aforementioned equations to reproduce Anderson’s plots, as we’ve
done in Figures 6.6 and 6.7, which were first done in 1949. Note that some of the curves are dashed
lines over regions where the number of points calculated were “not sufficient to draw reliable”
curves. Although you’ll find Matlab does these calculations instantaneously, in 1949, it took two
computers working essentially full time for two months to make these and a few other plots in
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Figure 6.6 Anderson Figure 3. Reflectivity R for direct backward scattering as a function of acoustic radius
ka for two fluid spheres whose relative densities are 1.0 and whose relative sound velocities are 1.2 and 0.8
(a) and Anderson Figure 4. Reflectivity R for direct backward scattering as a function of acoustic radius ka for
various values of relative density g and relative velocity h (b).
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Figure 6.7 Anderson Figure 5. Total scattering Π as a function of acoustic radius ka for the two spheres
considered in Figure 3 and also for a sphere with g = 0.5, h = 1.0 (a) and as a function of the acoustic radius
ka for the three cases shown in Anderson Figure 4 (b).
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Anderson’s paper. Those two computers were named Misses Gwendolyn Roy and Gloria Slack. In
1949, computer was a job title, not a device, which I once pointed out to a student who was all smug
that her Matlab code was instantaneous.9

Anderson’s motivation was sonar, that is, scattering from the swim bladders of fish. More
recently, we’ve used this formulation for acoustic scattering from air bubbles to improve the
detection, counting, and sizing of gaseous emboli during heart bypass surgery. Some patients
who have heart surgery end up with cognitive deficit. Sometimes it’s temporary; sometimes it’s
permanent. What happens is that air gets into the heart-lung machine and isn’t filtered out before
the blood goes back into the body. If an embolism makes its way to the brain, it can lodge there
and block blood flow to regions distal to the blockage. There is medication to help with this,
but it’s only used when needed. The EDACS system [17] uses backscattered ultrasound to detect
air bubbles during surgery so appropriate action can be taken. Our challenge was to explore the
scattering behavior to isolate simple rules of thumb that could be implemented on the existing
FPGA in the FDA-approved device. Changing the hardware would have required going back for
additional approvals, which is expensive and time consuming. After interacting with the clinicians
to narrow down the acoustic parameters, we ran our models and gave the EDACS engineers the
necessary simple rules to implement.

Although EDACS performed well as intended, they had difficulty convincing surgeons to adopt
the technology. The near-universal response was, “My patients never have any problems. It’s those
other guys who you should talk to.” A refined pitch was needed. We began to work on the scattering
analysis that would enable enhanced removal of bubbles, using acoustic radiation force due to
scattering to improve debubbling. The existing clinical devices all had a reservoir built into them
where blood came in at the top and exited the bottom, with simple buoyancy removing some of
the bubbles from the flow. By putting a large upward-pointing acoustic transducer at the bottom
of the reservoir, the radiation force would give buoyancy an extra boost. The pitch for the clinician
was that this would allow the debubbling reservoir to be smaller, and heart surgery would use less
blood transfusion.

The primary technical challenge for us was that acoustic radiation force is a nonlinear scattering
problem and viscosity seems to matter. The Anderson model that accurately described the backscat-
tering from air bubbles needed to be augmented. As expected, it got complicated in a hurry. We
implemented two models, one which accounted for viscosity and one which didn’t. The blood was
thinned during this surgery, so the clinicians felt that viscosity was an important parameter. The
bottom line turned out to be that it didn’t affect the radiation pressure enough to matter clinically.
We were initially puzzled as to why the Russian mathematician who formulated the viscous model
didn’t include any plots in his papers. Once we got the model up and running, it became clear that
he didn’t have the computational power to make any plots.10

9 Dr. Alison Pouch is currently Assistant Professor of Radiology and Bioengineering at Penn, where she earned a
PhD in Bioengineering and Biomedical Engineering. At W&M, she was a Physics-Anthropology double major with
a minor in Mathematics and was president of the Juggling Club.
10 Implementation of the viscous model takes a significant amount of computational power. Numerical models
were implemented with Matlab using part of the SciClone computing cluster at William and Mary with 72
dual-processor, dual-core Dell SC1435 servers running at 2.6 GHz. The viscous model required over 3000 CPU hours
in order to calculate radiation force for one material combination. The computation was accomplished in less
wall-clock time by breaking the code into pieces and running up to 65 jobs at once. Due to the time required by the
viscous model, the infinite summation was computed only to n = 30. The inviscid model can be numerically
implemented very quickly and takes only minutes to compute force for n = 0 ∶ 30.
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We were pleased that our modeling was able to help our former student in his commercialization
efforts. Outside all of our control, though, was the collapse of the economy right about that time.
The EDACS technology was about to be spun off to facilitate commercialization, but that got put
on hold because the small company had just done an IPO and their stock tanked when everybody
everywhere stopped buying the sorts of products they were selling. Cash flow from research grants
doesn’t help the quarterly sales numbers that affect your stock price. They may have also been a
bit optimistic about the value of the EDACS IP in the IPO, and were insisting on valuations that
prevented EDACS from spinning off.

Since we had included viscosity in both the embolism and the blood so as to be able to model lipid
emboli [18], our radiation force model almost immediately found utility in a seemingly unrelated
project: sorting micro algae with radiation force [19]. This was a huge, but short lived, project to use
algae to both clean up the Chesapeake Bay and make biofuels.11 We ran our models and published
our results and waited for the biofuels superconsortium to get fully underway. The US$ 100 million
proposal never quite got submitted because the company leading the project was cross that proposal
preparation costs are not allowable charges at DoE. I heard afterward that DoE was crossed that
our proposal didn’t arrive as expected.

There are presumably other applications of this complicated acoustic radiation force analysis.
Setting up standing waves will cause some particles to migrate to nodes and some to antinodes.
Acoustic tweezers have been found useful for manipulating submillimeter particles for flow cytom-
etry, cell separation, cell trapping, single-cell manipulation, and nanomaterial manipulation. Going
way back, one of the promises for the International Space Station was containerless processing of
exotic materials in microgravity. The idea was that acoustic levitation12 could be used to hold blobs
of unobtainium in place while ultrapure alloys, pharmaceuticals, etc. that couldn’t be made on
earth would be manufactured in orbit.

6.3 Elastic Wave Sphere Scattering

We next present the solution for plane longitudinal and transverse elastic wave scattering from
an elastic sphere of radius r = a in an infinite elastic medium. The geometry is the same as in
the previous section. For an isotropic, homogeneous, and linearly elastic medium, the equation of
motion is

𝜌𝜕
2
t u⃗ − 𝜇∇2u⃗ − (𝜇 + 𝜆)∇(∇ ⋅ u⃗) = 0 (6.79)

where 𝜌 is the constant medium density, 𝜇 and 𝜆 are elastic Lamé parameters and u⃗ is the displace-
ment vector. After some manipulation and assuming harmonic time variation e−i𝜔t, the vector wave
equation may be written as:

(∇2 + K2)u⃗ −
(

1 − K2

k2

)
∇(∇ ⋅ u⃗) = 0 (6.80)

11 Walter Adey received his BS in Geophysics from MIT, performed graduate studies at MIT and Harvard in
Paleontology and Biology, and obtained his PhD in Marine Botany and Geology from the University of Michigan.
Since 1977, he has been the Director of the Marine Systems Laboratory at the Museum of Natural History,
Smithsonian Institution, now emeritus. US Patent 5,851,398 describes a novel algal energy scheme initially funded
by Statoil, a Norwegian Oil Company: https://www.wm.edu/offices/economicdevelopment/_documents/
100711vimschap.pdf.
12 Robert Apfel, Robert Higgin Professor of Mechanical Engineering, taught acoustics at Yale University for over
30 years, having trained at Harvard University with Frederic V. Hunt in a chain of advisors which can be loosely
traced back to 1802. Although Bob’s direct impact on the field of acoustics was prematurely cut short in 2002, his
legacy and influence are still growing through the contributions of his students, and the students of his students.

https://www.wm.edu/offices/economicdevelopment/_documents/100711vimschap.pdf
https://www.wm.edu/offices/economicdevelopment/_documents/100711vimschap.pdf
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Here K = 𝜔∕cT and k = 𝜔∕cL are the propagation constants for transverse and longitudinal elas-
tic waves with cT =

√
𝜇∕𝜌 and cL =

√
(𝜆 + 2𝜇)∕𝜌 defining the transverse and longitudinal wave

speeds, respectively. Both the spherical scatterer and the surrounding medium will be considered
to be elastic solids for which the above equations hold. The formulation of this problem dates to
1861, but it wasn’t solved until about 1990 [20]. Clebsch was interested in trying to model the inter-
action of light with lenses using an elastodynamic theory of the aether. I was interested in modeling
the interaction of ultrasonic waves in solids with flaws. Clebsch had to invent most of the math he
needed. I had to find well-tested FORTRAN subroutines that evaluated the special functions. Both
analyses start at exactly the same place.

In the case of an isolated spherical scatterer, it is natural to take a spherical coordinate system
(r, 𝜃, 𝜙)with the scatterer at the origin of the coordinate system, as before, so that the sphere surface
r = a is a constant coordinate surface. To avoid dealing with the vector wave equation, we define
three scalar generating functions 𝜋L, 𝜋SH , 𝜋SV in terms of the corresponding displacements

u⃗L = − 1
k2 ∇𝜋L

(
∇2 + k2)

𝜋L = 0

u⃗SH = ∇ × (r⃗𝜋SH)
(
∇2 + K2)

𝜋SH = 0 (6.81)

u⃗SV = 1
K
∇ × ∇ × (r⃗𝜋SV )

(
∇2 + K2)

𝜋SV = 0

where the total displacement is written in three parts: u⃗ = u⃗L + u⃗SH + u⃗SV . Note that u⃗L is dilata-
tional while u⃗SH and u⃗SV are solenoidal vectors, and that all of these scalar functions satisfy scalar
wave equations. The stress components can be found from

𝜎rr = 𝜆∇ ⋅ u⃗ + 2𝜇𝜕rur

𝜎r𝜃 = 𝜇
(
𝜕ru

𝜃
−

u
𝜃

r
+ 1

r
𝜕
𝜃
ur

)
(6.82)

𝜎
𝜃𝜃

= 𝜆∇ ⋅ u⃗ + 2𝜇
(1

r
𝜕
𝜃
u
𝜃
+ 1

r
ur

)
where

∇ ⋅ u⃗ = 1
r2 𝜕r

(
r2ur

)
+ 1

r sin 𝜃
𝜕
𝜃

(
sin 𝜃u

𝜃

)
+ 1

r sin 𝜃
𝜕
𝜙

u
𝜙

When a purely compressional plane wave of unit amplitude and with wave number k1 is incident
on the surface of the spherical scatterer, scattered as well as transmitted longitudinal and vertical
shear modes will be generated. We set the following expressions for scalar potentials of incident,
scattered, and transmitted waves

r𝜋i
L =

∞∑
l=0

il+1(2l + 1)𝜓l(k1r)Pl(cos 𝜃)

r𝜋s
L =

∞∑
l=0

C(1)
l 𝜁l(k1r)Pl(cos 𝜃)

r𝜋t
L =

∞∑
l=0

C(2)
l 𝜓l(k2r)Pl(cos 𝜃) (6.83)

r𝜋s
SV = 1

K1

∞∑
l=0

C(3)
l 𝜁l(K1r)P(1)

l (cos 𝜃) cos𝜙

r𝜋t
SV = 1

K2

∞∑
l=0

C(4)
l 𝜓l(K2r)P(1)

l (cos 𝜃) cos𝜙
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where

𝜓l(x) = jl(x) =
√

x𝜋∕2Jl+1∕2(x) 𝜁l(x) = h(1)
l (x) =

√
x𝜋∕2H(1)

l+1∕2(x)

with Jl+1∕2(x) and H(1)
l+1∕2(x) the half-order cylindrical Bessel and Hankel functions. The horizontal

shear components are not included because they are not excited by an incident compressional wave.
Using the boundary conditions of continuous displacement and normal traction at r = a, we

write in matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2r

(
K1

k1

)2

+
[
l(l + 1) + 2

]
k2

1r3
−

2𝜕r

(k1r)2

𝜇2

𝜇1

(
1
2r

(
K2

k2

)2

−
[
l(l + 1) + 2

]
k2

2r3
+

2𝜕r

(k2r)2

)

− 4
k2

1r3
+

2𝜕r

(k1r)2

𝜇2

𝜇1

(
4

k2
2r3

−
2𝜕r

(k2r)2

)

− 1
(k1r)2

(
1 − r𝜕r

) 1
(k2r)2

(
1 − r𝜕r

)
1

(k1r)2 − 1
(k2r)2

(6.84)

− l(l + 1)
K1r2

(
𝜕r −

2
r

)
𝜇2

𝜇1

l(l + 1)
K2r2

(
𝜕r −

2
r

)
−2l(l + 1)

K1r3 +
2𝜕r

K1r2 +
K1

r
𝜇2

𝜇1

(
2l(l + 1)

K2r3 −
2𝜕r

K2r2 −
K2

r

)

− l(l + 1)
K1r2

l(l + 1)
K2r2

−
𝜕r

K1r
𝜕r

K2r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r𝜋s
L)

(r𝜋t
L)

(r𝜋s
SV )

(r𝜋t
SV )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2r

(
K1

k1

)2

−
[
l(l + 1) + 2

]
k2

1r3
+

2𝜕r

(k1r)2

4
k2

1r3
−

2𝜕r

(k1r)2

1
(k1r)2

(
1 − r𝜕r

)
1

(k1r)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r𝜋i
L)

In these equations, it is understood that after differentiation, r must be substituted by the bound-
ary radius r = a. The identities
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1
sin 𝜃

𝜕

𝜕𝜃

[
sin 𝜃 𝜕

𝜕𝜃

(⋅)
]
+ 1

sin2
𝜃

𝜕
2

𝜕𝜙
2 (⋅) = −l(l + 1)(⋅)

(6.85)
𝜕

2

𝜕r2 (⋅) +
{

k2

K2

}
(⋅) = l(l + 1)

r2 (⋅)

were used to simplify the expressions. Then, after necessary manipulations

C(1)
l = il+1(2l + 1)

(
ΔL

1

Δ0

)
C(3)

l = il+1(2l + 1)

(
ΔL

3

Δ0

)
Pl(cos 𝜃)

P(1)
l (cos 𝜃) cos𝜙

C(2)
l = il+1(2l + 1)

(
ΔL

2

Δ0

)
C(4)

l = il+1(2l + 1)

(
ΔL

4

Δ0

)
Pl(cos 𝜃)

P(1)
l (cos 𝜃) cos𝜙

whereΔ0,ΔL
1 –ΔL

4 are the expressions that follow. With these, we are able to define the scalar scatter-
ing potential functions by using the four modal coefficients C(1)

l –C(4)
l . The scattered and transmitted

field components with known potentials r𝜋s
L, r𝜋s

SV and r𝜋t
L, r𝜋t

SV can easily be obtained from these
equations. Note that the L and SV modes are coupled through and at the boundary, even though
they propagate independently and it is clear that the boundary plays the role of a conversion mech-
anism. Upon the scattering of the incident longitudinal wave on the sphere, L and SV waves are
generated in the scattered field. Therefore, scattered energy will be propagated in terms of L and
SV waves. SH waves do not exist in the scattered field due to the fact that they can be excited only
by an incident wave of the same type.

Δ0 =
(
𝜇2

𝜇1
− 1

)2

[l(l + 1) − 2]

[
k2aj′l (k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

][
k1ah′

l (k1a)
hl(k1a)

K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

]

+ 1
2
(K1a)2

(
𝜇2

𝜇1
− 1

){[
k2aj′l (k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

][
K1a𝜁 ′l (K1a)
𝜁l(K1a)

+ 2
k1ah′

l (k1a)
hl(k1a)

− 2l(l + 1)

]

−
𝜌2

𝜌1

[
k1ah′

l (k1a)
hl(k1a)

K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

][
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

+ 2
k2aj′l (k2a)

jl(k2a)
− 2l(l + 1)

]}

+ 1
4
(K1a)4

{
l(l + 1)

[
1 −

𝜌2

𝜌1

]2

−

[
k2aj′l (k2a)

jl(k2a)
−
𝜌2

𝜌1

k1ah′
l (k1a)

hl(k1a)

][
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

−
𝜌2

𝜌1

K1a𝜁 ′l (K1a)
𝜁l(K1a)

]}

ΔL
1 =

jl(k1a)
hl(k1a)

{(
𝜇2

𝜇1
− 1

)2

[l(l + 1) − 2]

[
k2aj′l (k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

][
k1aj′l (k1a)

jl(k1a)
K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

]

+ 1
2
(K1a)2

(
𝜇2

𝜇1
− 1

){[
k2aj′l (k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

][
K1a𝜁 ′l (K1a)
𝜁l(K1a)

+ 2
k1aj′l (k1a)

jl(k1a)
− 2l(l + 1)

]

−
𝜌2

𝜌1

[
k1aj′l (k1a)

jl(k1a)
K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

][
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

+ 2
k2aj′l (k2a)

jl(k2a)
− 2l(l + 1)

]}

+ 1
4
(K1a)4

{
l(l + 1)

[
1 −

𝜌2

𝜌1

]2

−

[
k2aj′l (k2a)

jl(k2a)
−
𝜌2

𝜌1

k1aj′l (k1a)
jl(k1a)

][
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

−
𝜌2

𝜌1

K1a𝜁 ′l (K1a)
𝜁l(K1a)

]}}

ΔL
2 =

jl(k1a)
jl(k2a)

(
k1ah′

l (k1a)
hl(k1a)

−
k1aj′l (k1a)

jl(k1a)

)(
1
4
(K1a)4

[
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

−
𝜌2

𝜌1

K1a𝜁 ′l (K1a)
𝜁l(K1a)

]

+ 1
2
(K1a)2

(
𝜇2

𝜇1
− 1

){
K1a𝜁 ′l (K1a)
𝜁l(K1a)

K2a𝜓 ′
l (K2a)

𝜓l(K2a)
− l(l + 1)

[
K1a𝜁 ′l (K1a)
𝜁l(K1a)

+
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− 2

]})
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ΔL
3 =

K1

k1

jl(k1a)
hl(K1a)

(
k1aj′l (k1a)

jl(k1a)
−

k1ah′
l (k1a)

hl(k1a)

)(
1
4
(K1a)4

(
𝜇2

𝜇1
− 1

)
𝜌2

𝜌1

[
1 −

𝜌2

𝜌1

]
+ 1

2
(K1a)2

(
𝜇2

𝜇1
− 1

){[
k2aj′l (k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

]

−
𝜌2

𝜌1

[
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

+ 2
k2aj′l (k2a)

jl(k2a)
− 2l(l + 1)

]}

+
(
𝜇2

𝜇1
− 1

)2 [
l(l + 1) − 2

] [ k2aj′l (k2a)
jl(k2a)

K2a𝜓 ′
l (K2a)

𝜓l(K2a)
− l(l + 1)

])

ΔL
4 = −

K2

k1

jl(k1a)
jl(K2a)

(
k1aj′l (k1a)

jl(k1a)
−

k1ah′
l (k1a)

hl(k1a)

)(
1
4
(K1a)4

[
1 −

𝜌2

𝜌1

]
+ 1

2
(K1a)2

(
𝜇2

𝜇1
− 1

){
l(l + 1) − 2 +

[
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− 1

][
K1a𝜁 ′l (K1a)
𝜁l(K1a)

− 2

]})

We also note that Δ0 is the expression which describes the natural oscillations of an elastic
sphere embedded in an infinitely extended elastic medium of different material properties.
Indeed Δ0 is the determinantal expression of the coefficient matrix of the unknown amplitudes
C(1)

l –C(4)
l . In the absence of the incident wave, the right-hand column matrix disappears, and

the left-hand side represents a homogeneous equation for scalar potentials. For all nonzero
values of the amplitude parameters, the determinant must vanish, and a coupled equation
for longitudinal and vertical shear types of oscillations can be obtained. In the case of the
oscillation problem, this coupled equation indicates that energy can be converted from com-
pressional elastic waves to the transverse waves and vice-versa. Oscillations are of purely
dilatational type only when l = 0, which is expected since l = 0 is the only mode where
no transverse wave-types exist. For l ≠ 0 oscillations are coupled, and Δ0 = 0 is the gen-
eral expression, which describes coupled oscillations of longitudinal and vertical shear wave
modes.

If ΔL
1 = 0 or ΔL

3 = 0 while Δ0 is nonzero, the amplitudes of the corresponding scattered L
or SV waves will be zero, respectively. This indicates that for certain discrete sets of frequen-
cies, either scattered L or scattered SV waves vanish. Hence there may also be certain discrete
sets of frequencies for which the transmitted L or SV waves vanish. Moreover, whenever the
frequency of the incident wave approaches a characteristic frequency which makes Δ0 itself
vanish, resonant phenomena will occur. However, the incident frequency is real and the char-
acteristic frequencies are in general complex, so that in reality Δ0 can be reduced to a minimum
value but never quite to zero, so that the maximum amplitudes at resonance will be finite, not
infinite.

The total flow of scattered elastic energy in the radial direction through a closed surface may be
represented correctly by the radial component of the energy flux vector j = 𝜎ij𝜕tuj, which may be
decomposed into longitudinal and transverse parts

j = L
j + T

j = 𝜎
L
ij𝜕tuL

i + 𝜎T
ij 𝜕tuT

i (6.86)

From the potentials 𝜋s
L and 𝜋s

SV the scattered field components can be obtained directly. Noting that
L and SV modes are coupled through and at the boundary, they will propagate independently in
the present linear field approximation. The boundary plays the role of conversion of energy, that is,
the incident L mode is converted to the scattered SV mode and vice versa.
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Significant quantities are intensities, differential, and total cross sections of the scattered field.
Intensities for each mode represent the radiation-per-unit solid angle Ω. They are defined in terms
of the time-averaged radial component of the far-field energy flux vector:

IL
scat =

𝜔𝜇1

2r

(
K1r
k1r

)2 1
k1r

||||||
∞∑

l=0
(2l + 1)

(
ΔL

1

Δ0

)[
Pl(cos 𝜃)

]||||||
2

ISV
scat =

𝜔𝜇1

2r
1

K1r

||||||
∞∑

l=0
(2l + 1)

(
ΔL

3

Δ0

)[
𝜕

𝜕𝜃

Pl(cos 𝜃)
]||||||

2

(6.87)

IL
inc =

𝜔𝜇1

2r
(K1r)2

k1r

where IL
scat, I

SV
scat and IL

inc represent the intensities of the scattered L-type waves, SV-type waves, and
the intensity of the incident L-wave which is propagating in the z-direction. Note that the scattered
waves are independent of the polarization angle 𝜙.

Dividing the intensity of the scattered wave by the intensity of the incident wave, we obtain the
differential scattering cross sections of the longitudinal and transverse waves:

d𝜎
dΩ

L
= 1

(k1r)2

||||||
∞∑

l=0
(2l + 1)

(
ΔL

1

Δ0

)[
Pl(cos 𝜃)

]||||||
2

(6.88)
d𝜎
dΩ

SV
=

k1r
(K1r)3

||||||
∞∑

l=1
(2l + 1)

(
ΔL

3

Δ0

)[
𝜕

𝜕𝜃

Pl(cos 𝜃)
]||||||

2

Integrating these expressions over a spherical surface with radius r, we obtain the total scattering
cross sections

𝜎
L
scat =

4𝜋r2

(k1r)2

∞∑
l=0

(2l + 1)
|||||Δ

L
1

Δ0

|||||
2

(6.89)
𝜎

SV
scat =

4𝜋r2

(K1r)2

k1

K1

∞∑
l=1

(2l + 1)l(l + 1)
|||||Δ

L
3

Δ0

|||||
2

Other important quantities are the extinction and absorption cross section. By a known procedure
[5], they can be obtained

𝜎ext =
4𝜋r2

(k1r)2

∞∑
l=0

(2l + 1)ℜ

(
ΔL

1

Δ0

)
(6.90)

and by definition 𝜎abs = 𝜎ext − (𝜎L
scat + 𝜎

SV
scat). Therefore, by knowing quantities C(1)

l and C(3)
l , we are

able to calculate the scattering quantities. Since the absorption cross section is identically zero for
lossless scattering we then have 𝜎ext = 𝜎scat, which provides a detailed consistency check on our
results.

If we set the shear modulus, 𝜇1, equal to zero in the medium surrounding the sphere, no shear
waves will be present in the scattered field and our results reduce to those of the scattering of ordi-
nary acoustic waves from an elastic sphere. In this case, ΔL

3 = 0 and
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Δ0 = −1
2
(K2a)2 𝜌1

𝜌2

[
k2aj′l(k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1) + 1
2
(K2a)2

k2aj′l(k2a)
jl(k2a)

]

+
k1ah′

l(k1a)
hl(k1a)

{[
k2aj′l(k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

] [
2 − l(l + 1)

]
+ 1

2
(K2a)2

[
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

+ 2
k2aj′l(k2a)

jl(k2a)
− 2l(l + 1) + 1

2
(K2a)2

]}

ΔL
1 =

{
−1

2
(K2a)2 𝜌1

𝜌2

[
k2aj′l(k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1) + 1
2
(K2a)2

k2aj′l(k2a)
jl(k2a)

]

+
k1aj′l(k1a)

jl(k1a)

{[
k2aj′l(k2a)

jl(k2a)
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

− l(l + 1)

] [
2 − l(l + 1)

]
+ 1

2
(K2a)2

[
K2a𝜓 ′

l (K2a)
𝜓l(K2a)

+ 2
k2aj′l(k2a)

jl(k2a)
− 2l(l + 1) + 1

2
(K2a)2

]}}
jl(k1a)
hl(k1a)

with these substitutions, the expressions given earlier for longitudinal intensities and cross sections
are valid and agree with those of J.J. Faran [21] who first derived the exact solution for acoustic wave
scattering from an elastic sphere.

The consistency of the present formulation can be further checked by comparing the limit where
the shear moduli of both media vanish with the known results of classical acoustic (hydrodynamic)
theory. If the shear modulus, 𝜇, is set to zero everywhere, the solutions become those of the scat-
tering of acoustic waves from a fluid sphere. The problem is no longer an elastic problem, but is
an acoustic (hydrodynamic) problem and the characteristic coefficients of the scattered wave now
reduce to ΔL

3 = 0 and

Δ0 =
k2aj′l(k2a)

jl(k2a)
−
𝜌2

𝜌1

k1ah′
l(k1a)

hl(k1a)
ΔL

1 =
jl(k1a)
hl(k1a)

{
k2aj′l(k2a)

jl(k2a)
−
𝜌2

𝜌1

k1aj′l(k1a)
jl(k1a)

}

which are precisely the coefficients for the scattering problem of acoustic waves from a fluid bub-
ble [16].

No transmitted shear waves are arrived at by the limit:𝜇2 → 0, but 𝜇2K2
2 finite. Our results reduce

to those of the scattering of ordinary acoustic waves from an elastic sphere.

Δ0 = −
k2aj′l(k2a)

jl(k2a)

{[
k1ah′

l(k1a)
hl(k1a)

K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

]

+ 1
2
(K1a)2

[
K1a𝜁 ′l (K1a)
𝜁l(K1a)

+ 2
k1ah′

l(k1a)
hl(k1a)

− 2l(l + 1) + 1
2
(K1a)2

]}

+1
2
(K1a)2 𝜌2

𝜌1

[
k1ah′

l(k1a)
hl(k1a)

K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1) + 1
2
(K1a)2

k1ah′
l(k1a)

hl(k1a)

]

and so on.
If the scatterer is a cavity there will be no transmitted fields (Figure 6.8), so we take the limit

where 𝜆2, 𝜇2, 𝜌2 vanish. We find that
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Figure 6.8 Scattering cross sections for spherical cavities in various media for incident L waves (a) and T
waves (b) from Hinders (1990). These were drawn using an HP plotter, which uses actual ink pens to draw
the figures, which were then literally cut and pasted into the document. I’m a little surprised that the paste
lasted 30 years and that the ink hadn’t faded or the paper yellowed too much.

Δ0 =
[
2 − l(l + 1)

] [k1ah′
l(k1a)

hl(k1a)
−

K1a𝜁 ′l (K1a)
𝜁l(K1a)

]

+1
2
(K1a)2

[
K1a𝜁 ′l (K1a)
𝜁l(K1a)

+ 2
k1ah′

l(k1a)
hl(k1a)

− 2l(l + 1) + 1
2
(K1a)2

]
and so on.

Finally, if the scatterer is perfectly rigid and infinitely dense, the boundary conditions will be zero
displacements at r = a, which is technically nonphysical, but at least the algebra is simple. You can
check for yourself that the answer is

Δ0 =
k1ah′

l(k1a)
hl(k1a)

K1a𝜁 ′l (K1a)
𝜁l(K1a)

− l(l + 1)

Clebsch gave these results in 1861. I suppose technically the correct limit is 𝜆2 → ∞, 𝜇2 → ∞, but
with the density finite, to give a rigid but movable scatterer. We might as well just plug numbers
for actual materials into the results for elastic scatterers.

6.4 Incident Transverse Wave

If a transverse wave with wave number K1 = 𝜔

√
𝜌1∕𝜇1 is incident upon the surface of the sphere,

scattered and transmitted longitudinal, vertical shear, and horizontal shear waves will be excited. By
using the boundary conditions, we write the following two systems of equations. The first is for cou-
pled L and SV while the second is for SH. Note that Δ0 is the same as for the incident longitudinal
wave.
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These potentials have been defined to give identical forms as those for the corresponding plasma
problem [22], which is formally quite similar to the present problem since instead of L, SH, SV



6.4 Incident Transverse Wave 201

fields one must consider L, TE, TM fields in a plasma.13 These equations are written for r = a, at the
boundary surface separating the elastic sphere from the surrounding medium. As in the previous
case, unknown amplitudes A(1)

l ,A(2)
l and also B(1)

l –B(4)
l can be determined from these two separate

sets of equations:
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6 (6.93)

Upon scattering of the incident transverse elastic waves on the surface of the spherical scatterer SV,
SH, L waves will be generated in the scattered and transmitted regions. SV and L modes are coupled
at the boundary and the generation of L waves is due to this boundary coupling. Since the incident
energy is carried in both the SV- and SH-type waves, L is excited by the incident wave. In the case
of incident L waves, SH waves were not excited, since there was no SH-wave mode participation in
the incident wave modes, and since the boundary does not couple SH waves with either the L or
the SV.
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13 Indeed, when I sat down to write up the results from my dissertation for publication, I followed the structure
and mimicked the language of my then-deceased advisor and submitted the manuscript to the journal where he had
published the plasma sphere scattering paper many years before. It was accepted without revision, which I now
know to be rather unusual. What you’ll find strange is that in 1990, I submitted the manuscript to that Italian
journal via mail. Once the manuscript was accepted, the editor sent it out (to India) for typesetting where the text
and equations were retyped using some proprietary system and the galley proofs were mailed to me to check for
errors. I have a clear memory of sitting on my back steps, checking through everything carefully. Your first
solo-author publication is a pretty big deal, BTW.
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As in the previous calculations, we use the elastic energy flux vector to obtain the expressions for
important scattering quantities. Intensities of the incident and scattered waves are written:
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It can be seen from these expressions that scattered waves of all types include the polarization
angle 𝜙 so that the scattered waves do not radiate azimuthally symmetric as they did for the case
of incident longitudinal waves. We can now write the differential cross sections for the three types
of waves for incident transverse waves as:
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The scattering cross sections will be obtained by integrating these expressions over a surface of
radius r > a:
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As one can see from the total scattering cross-sections expressions, there will be no radiation of
scattered waves at zero mode. This means that transverse waves do not excite the zeroth mode of
scattered waves as they did in the case of the incident L waves. Extinction and absorption cross
sections are found as before, we write

𝜎ext =
2𝜋r2

(K1r)2

∞∑
l=1

(2l + 1)ℜ

(
ΔT

3

Δ0
+ ΔT

5

)
(6.97)

which will be equal to the total scattering cross section for lossless scattering. Since 𝜎abs = 𝜎ext −
(𝜎L

scat + 𝜎
SV
scat + 𝜎

SH
scat), we can use the lossless case where 𝜎abs = 0 to check our results for consistency.

I have a clear memory of those zeros scrolling down my screen on a sunny morning, which I took
to mean both that I had done the algebra correctly and that my FORTRAN77 code was running
properly.

The Rayleigh-range scattering cross sections are given in a simple form here. When the scatterer
is small, the radial functions can be replaced by the corresponding small argument approximations
and higher powers of the size parameters are neglected. Normalizing the scattering cross sections
for incident longitudinal and transverse waves by the geometric cross section of the scatterer, 𝜋a2,
we find the following Rayleigh-limit expressions:
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As one can see here, the scattering cross sections are proportional with the fourth power of the
wave number, which agrees with the results of Rayleigh scattering. It is to be noted that in the
small-sphere limit the contribution of the scattered SH-field to the transverse scattering cross
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section is negligible compared to that for the SV-field. Both of these results correspond exactly to
the well-known results of Truell and coworkers [23, 24] and his students.14

One of the things that I’m forever harping on is to compare your new results with well-established
ones in the literature. The reason for showing all the special cases above is that most of those results
are in the literature, and consistency with them is a good check on more general results. But more
importantly, when you code up some new results of your own, or even just the results of others’ from
the literature, you need to make sure that you’ve done that properly. The equations are complicated
and there’s no particular reason to think that you can look at your plots and tell whether they are
right or not. Reproducing plots of others that have withstood some years of scrutiny is good practice
(Figures 6.8 and 6.9). Here’s a cautionary tale.

In 1972, McBride and Kraft coded up the equations of [24] for transverse elastic wave scattering
from an elastic sphere and published a paper with a bunch of plots. That would have been rather
tough to do in the early 1970s, so the paper was noteworthy for the number of plots they showed.
Their goal was to do enough plots to begin to categorize scattering behavior(s). They concluded
that, “The scattering behavior for an incident transverse wave was seen to be markedly different
from that of an incident longitudinal wave.” The problem is that they propagated a typo from [24]
and so their results, and hence their conclusions, weren’t meaningful. Woopsie. I just checked the
online version15 and there’s no indication there that the plots and text are in error. Sooner or later,
everybody who remembers this botch will be dead or retired and future researchers might assume
that what’s shown must be correct because it’s been around for so long.

Special cases to the present problem may be obtained by letting the shear modulus, 𝜇, equal zero
both inside and outside of the sphere.

6.5 Scattering from Spherical Shells

The interaction of an elastic wave with a layered spherical inclusion has been the focus of many
authors concerned with nondestructive testing and prediction of dynamical effects in composite
materials. The difficulties encountered in measuring the properties of the interface between the
particles and the matrix, make analyses of these types of problems useful in predicting the bulk
behavior of the composite material. Many different analyses have been made, including those using
finite element, integral equation, and eigenfunction approaches. The latter is the only method that
avoids repeated numerical matrix inversions and provides exact and analytic, closed-form algebraic
solutions. It is this eigenfunction method that is the focus of our analysis.

The longitudinal scattering cross section can be written as:
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(6.98)

14 C.F. Ying was the founder and pioneer of ultrasonics research in China. In 1951, Ying started to work for Prof.
Rohn Truell’s Metals Research Laboratory of Brown University and co-authored with Prof. Truell a series of
research papers, including [23]. In 1956, Ying came back to China and entered into the Chinese Academy of
Sciences (CAS), served as researcher at Institute of Applied Physics; then in 1957, director of research at the
Institute of Electronics; and then in 1964, director of research at the newly founded Institute of Acoustics. He
dedicated himself to promoting the research and applications of ultrasonics in China despite the turbulences of the
political movements beginning to overwhelm the Chinese society since early 1960s. During the Cultural Revolution
Ying was tortured, imprisoned and once attempted suicide, and his first spouse died of cancer in a camp in southern
China. Nevertheless, Ying made numerous breakthroughs in research, education, and was granted multiple
national awards.
15 https://pubs.aip.org/aip/jap/article/43/12/4853/168864/Scattering-of-a-transverse-elastic-wave-by-an.

https://pubs.aip.org/aip/jap/article/43/12/4853/168864/Scattering-of-a-transverse-elastic-wave-by-an
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Figure 6.9 Scattering cross sections: short dashed line is the SV-wave component, long dashed line is the
SH-wave component, and short-long dashed line is the L-wave component. (a) Incident longitudinal waves
for sphere of aluminum in germanium; (b) incident longitudinal waves for sphere of germanium in
aluminum; (c) incident transverse waves for a sphere of aluminum in germanium; (d) incident transverse
waves for sphere of germanium in aluminum. The dotted lines are the Rayleigh-scattering approximations
for small scatterers. (e) Incident longitudinal waves for sphere of stainless steel in magnesium; (f) incident
longitudinal waves for sphere of magnesium in stainless steel; (g) incident transverse waves for a sphere of
stainless steel in magnesium; (h) incident transverse waves for sphere of magnesium in stainless steel.
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Figure 6.10 Elastic wave scattering from a two-layer spherical elastic inclusion in stainless steel. Plot (a)
is for a zero-thickness shell surrounding a magnesium core. Plot (b) is for an aluminum shell with thickness
10% of the radius of the magnesium core. Plot (c) is for an aluminum shell with a thickness equal to that of
the radius of the magnesium core. Plot (d) is for a zero-radius core so that the inclusion is aluminum.

This is essentially the same expression we arrived at for elastic wave scattering from an elastic
sphere, except that the Δ’s are a lot more complicated. I know because we did that algebra [25] and
made the plots in Figure 6.10.

I realize that many of the expressions in this chapter are a bit extra. Some do go on for several
pages, but I think it’s important to point out that these are exact expressions. Getting plots out of
them is a straightforward, if nontrivial, exercise in typing them into whichever computer language
you prefer and summing things up to get the answer(s). As I was putting this book together, it was
suggested that “A website with Matlab code for implementing the methods described in the book
would be extremely helpful.” My response was that while I agree that could be helpful for many
readers, what I’ve found is that the languages change rather rapidly, that is, FORTRAN begets C
which begets Matlab which begets Python. Part of my goal here is to help readers know how to find
what they need when they need it, with an appreciation for how rapidly such things change. Once
upon a time, you simply asked around the lab to see if anybody had the subroutine you needed.
Not long ago, the answer used to be to have a 3.5 diskette or code listing in the back of the book.
Then it was a CD and/or a webpage tied to the text/class. Now the answer seems to be GitHub,
but we’re all worried about that since Microsoft gobbled it up. I don’t pretend to know what the
right answer is going to be going forward, but my sneaking suspicion is that sometime soon some
new LLM will be able to translate the equations off a page into code to make plots. If that turns
out to be ridiculously easy someday, feel free to send me a postcard saying “neener-neener” and
I’ll put it on the bulletin board in my lab so my graduate students can glance over at it and smirk
when I start going on about FORTRAN or whatever. I’m generally quite a good sport about such
things.
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If I included a comprehensive bibliography for scattering from spheres, it would be many, many
pages long. Instead, I’ve included some of the key reference texts and important individual citations,
but I do want to include three valuable, but obscure books you should be on the look out for. The
first is something that I made myself a photocopy of more than 30 years ago and have had it on
my bookshelf ever since [26]. The other two [27, 28] should be available on Internet Archive or
discarded by libraries; they have lots of obscure details you might just need someday.

I feel like I should remind you that this is a book about data engineering. The plots that I’ve
included for the various versions of scattering from spheres are mostly scattering cross sections.
That’s because those are the sorts of things that people have plotted, going all the way back to
the days when computers were humans and it took months of effort to make them. Once you’ve
gotten these various solutions coded up, you’ll be able to make all kinds of plots, of course, but do
start with cross sections so you can benchmark your output against the established literature. Then
plot whatever you like because the whole point of the analysis is to be able to use the solutions to
explore the scattering behavior. In particular, the idea is to use them to understand what features
in the scattering behavior are most likely to be exploitable for machine learning. Computationally
there’s no longer any restrictions on fully exploring the scattering behavior, so exercise your code(s)
in that way so as to gain insight into designing both measurement schemes and signal processing
approaches for ML. That’s what data engineering is.
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7

Scattering from Cylinders

Don’t tell anybody, but a question I usually put on the PhD qualifying exam is: Why do the pow-
erlines above I-95 in Quantico, VA have orange spheres on them? The first part of the question
tests general awareness, that is, knowing that Quantico is a Marine Base. It’s pretty hard not to
know that if you’ve driven that stretch of I95 because the traffic always seems to choke right by the
National Museum of the Marine Corps which you can’t help noticing from the road. Slightly more
awareness is tested by knowing that the Marines fly helicopters. That they fly them at night. That
they fly them close to the ground. That powerlines and low-flying helicopters don’t mix. I would
expect a PhD student to conclude that the orange spheres have something to do with helicopters
avoiding powerlines at night. During the day, the orange color is helpful because the powerlines
themselves might be tough to see. At night, the orange color is not relevant. Hence, the second part
of the question is related to backscattering of the radar that helicopters are using to avoid obstacles.
So, the answer that I’m looking for is a discussion about electromagnetic scattering from spheres vs.
cylinders. In particular, radar is transversely polarized and will scatter most strongly from long, thin
wires only when the wires line up with that polarization, which could be a real problem. Spheres,
on the other hand, have no orientation, so they will backscatter the same from all directions for
all polarizations. Students get bonus points if they make a wild guess at the wavelengths of the
radar marine helicopters might use and how that relates to the radii of the wires and spheres. Dou-
ble bonus points if they speculate about how the magnetic fields of the transmission lines would
introduce eddy currents in the metallic spheres which would tend to heat up just a bit because of
the finite conductivity of the steel the hemispheres are stamped from and that slight temperature
elevation would show up on infrared imagers that helicopter pilots probably also have. . . .

7.1 Electromagnetic Wave Scattering

I once gave a talk with the title, “What ever became of the aether?” which must have been well
received because I got the job that I’ve held for more than 30 years. The short version of the story is
that before Maxwell’s equations came into widespread use for modeling the propagation and scat-
tering of light and assorted electromagnetic radiation [1–5], everybody had to use the elastic solid
theory of the aether,1 which was cumbersome enough that there was a collective, “Oh thank God.
This is so much simpler!” when people figured out that they could start with Maxwell’s equations
instead. Part of the issue is that experiments had shown conclusively that light was a transverse
wave, whereas elastic waves can be longitudinal and transverse with mode coupling between them

1 https://en.wikipedia.org/wiki/A_History_of_the_Theories_of_Aether_and_Electricity.

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.

https://en.wikipedia.org/wiki/A_History_of_the_Theories_of_Aether_and_Electricity


210 7 Scattering from Cylinders

Direction of
propagation

1

2

y

x

a

Figure 7.1 Problem geometry for scattering from a cylinder.

during reflection, refraction, and scattering. The answer to the question posed in the title of my
1993 job talk is that the mathematical machinery needed to model light propagating in the aether
is now used to model things like ultrasonic nondestructive evaluation.

Let’s start with electromagnetic wave scattering from cylinders, and then we’ll do acoustic and
elastic wave scattering from cylinders. As in Chapter 6, I’ll go through the math and then show
you some representative plots. I’ve made an attempt to dig up well-validated results from classic
textbooks, and will then exhort you to get your own code running and reproduce the plots that I’ve
mimicked here.

The problem geometry is shown Figure 7.1, with the infinite cylinder of radius r = a oriented
in the z-direction that we assume has different material properties from the surrounding medium.
Call the region r > a medium 1 and r < a medium 2.

Since we’re going to solve the problem in frequency domain, we will suppress the e−i𝜔t time
dependence, and write Maxwell’s equations as:

∇ × H⃗ = −i𝜔𝜖E⃗ ∇ × E⃗ = i𝜔𝜇H⃗ (7.1)

along with ∇ ⋅ E⃗ = 0 and ∇ ⋅ H⃗ = 0, where the wave numbers are

K1 = 𝜔

√
𝜖1𝜇1 K2 = 𝜔

√(
𝜖2 + i

𝜎2

𝜔

)
𝜇2 (7.2)

and we note that the finite conductivity of the cylinder turns out to be really important because
infinite conductivity means that the cylinder will be a perfect reflector. Since that’s an excellent
approximation for metals at radar frequencies, quite a lot of the literature makes this simplifying
assumption. We won’t do that, but will consider it as a limiting case to compare with standard
results in the literature.

Now take the curl of the first two of Maxwell’s equations and use my favorite vector identity

∇ × (∇ × A⃗) = ∇(∇ ⋅ A⃗) − ∇2A⃗ (7.3)

to get the vector wave equation for both E⃗ and H⃗

∇2E⃗ + K2E⃗ = 0 ∇2H⃗ + K2H⃗ = 0 (7.4)

Since we’re going to want a plane wave propagating in the x-direction, the incident wave
solution is

Einc
z = eiK1x Einc

x = Einc
y = 0 (7.5)

or

Einc
y = eiK1x E(i)

x = Einc
z = 0 (7.6)

with the magnetic field components computed via Maxwell’s equations. Note that we have recog-
nized that we’re talking about transversely polarized waves here, and have assumed that one case
has the electric field polarized in the xz-plane, while the other has the electric field polarized in the
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yz-plane. This is one way where scattering from a cylinder is a bit more complicated than scattering
from a sphere. Another is that the incident wave can be oblique, but I’m not going to consider that
(much), so we can focus on the scattering issues most of interest. In addition, if we want a different
polarization, we can simply consider a linear combination of these two, so let’s not worry about
that right now either.

We’ll then assume appropriate functional forms for the scattered electric and magnetic fields
in region 1 (r > a) as well as in region 2 (r < a). Those solutions are going to be in cylindrical
functions, of course. Then we’ll apply the boundary conditions of continuity of tangential electric
and magnetic fields at the boundary r = a and so some algebra.

As in scattering by a sphere, we start with the scalar wave equation

∇2Ψ + K2Ψ = 0 (7.7)

and in cylindrical coordinates, this becomes

1
r
𝜕

𝜕r

(
r 𝜕Ψ
𝜕r

)
+ 1

r2
𝜕

2Ψ
𝜕𝜙

2 + 𝜕
2Ψ
𝜕z2 + K2Ψ = 0 (7.8)

In Chapter 2, there was an exercise for you to write the general solution to this via separation of
variables, so here I’m simply going to assert that the general solution is a linear combination of

Ψn(r, 𝜙, z) = Zn(𝜌)ein𝜙eihz (7.9)

for n = 0,±1,±2,…. Of course, Zn is a solution of Bessel’s equation

𝜌

d
d𝜌

(
𝜌

d
d𝜌

Zn

)
+ (𝜌2 − n2)Zn = 0 (7.10)

and 𝜌 = r
√

K2 − h2, where h is a separation constant. Note that the variations in 𝜙 and z are both
sinusoidal, which is kind of a relief for us because the only special functions involved so far are
the plain old, integral-order Bessel functions. There is one key point to make right here, though.
Electric and magnetic waves are vector fields, but we’ve just written the general solution to the
scalar wave equation. We have to introduce vector cylindrical harmonics:

M⃗n = ∇ ×
(

êzΨn
)

N⃗n = ∇ ×

(
∇ × M⃗n

K

)
(7.11)

I assume that you’ve long-since identified a convenient source for things like curl in cylindrical
coordinates, but for your convenience here are the vector harmonics written out

M⃗n =
√

K2 − h2
(

in
Zn(𝜌)
𝜌

êr − Z′
n(𝜌)ê + 𝜙

)
ei(n𝜙+hz)

N⃗n =
√

K2 − h2

K

(
ihZ′

n(𝜌)êr − hn
Zn(𝜌)
𝜌

ê
𝜙
+
√

K2 − h2Zn(𝜌)êz

)
ei(n𝜙+hz)

Note that these vector harmonics are orthogonal, which is going to do something very important
for us. When we apply the boundary conditions we’ll invoke orthogonality to get rid of the pesky
summation over all n on both sides of the equations, and then the boundary condition equations
will be valid for each value of n. It’s a subtle point that is usually glossed over until it comes back
to bite you. Stay tuned for that.

Meanwhile, we have a general solution in cylindrical coordinates for Ψn(𝜌) and so we can write
the general forms of the vector harmonics easily enough. The next step is to write something along
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the lines of

E⃗ =
∞∑

n=−∞

[
AnM⃗n + BnN⃗n

]
(7.12)

for the incident, scattered, and transmitted fields. We’ll want the incident wave to be a plane wave
propagating in the positive x-direction and polarized in either the z- or y-direction, in both cases
at normal incidence to the cylinder axis. That will simplify things quite a bit as we’ll see in just
a moment. For the scattered wave, we’ll choose the appropriate Hankel function Hn(𝜌), so that
the scattered field obeys the Sommerfeld radiation condition, that is, it decays like an expanding
cylindrical wave at large distances from the origin. I hope that makes good sense to you. For the
transmitted wave, which is the one that exists for r < a, we will note that the Neumann function
Yn(𝜌) is singular at the origin, so on physical grounds, we’ll choose just the Bessel function Jn(𝜌)
for that. This is all exactly analogous to what we did for spheres, except that it’s cylindrical Bessel
functions rather than spherical Bessel functions now. We can thus pencil in Jn(𝜌) or Hn(𝜌), where
we’ve written Zn(𝜌) in the expressions for M⃗n and N⃗n earlier.

As promised, we’ll restrict things to normal incidence in just a moment, but most authors can’t
resist starting with the more general case of oblique incidence, so consider 𝜁 to define the angle
between the z-axis and the direction of propagation of the incident plane wave. To be just a bit
pedantic about it, we then have

E⃗inc = E⃗0eiK(sin 𝜁êx−cos 𝜁êz) (7.13)

where the polarization is determined by the vector E⃗0 and that will be either parallel to the xz-plane
or perpendicular to it. Of course, 𝜁 = 90∘ is the normal-incidence case that I keep promising.

7.1.1 Incident E-Field Parallel to the xz-Plane

For the case of the incident electric field parallel to the xz-plane we write the incident electric field
as:

E⃗inc = E0
(
sin 𝜁êz − cos 𝜁êx

)
e−iK(r sin 𝜁 cos𝜙+z cos 𝜁 ) (7.14)

and the separation constant that’s been floating around must be h = −K cos 𝜁 so you can see why
things are going to get quite a lot simpler when 𝜁 = 90∘. To quote [2], “All that is required now is a
good bit of patience to show that” the appropriate expansion of the incident electromagnetic field is

E⃗inc =
E0

K sin 𝜁

∞∑
n=−∞

(−i)nN⃗
(1)
n H⃗inc =

−iE0

𝜔𝜇 sin 𝜁

∞∑
n=−∞

(−i)nM⃗
(1)
n (7.15)

where E0 is the amplitude of the incident plane wave which we’ll usually take as unity because
we’ll ultimately plot things scaled by that anyway. The notation M⃗

(1)
n , N⃗

(1)
n is intended to remind

ourselves that we need to use the Bessel function Jn for the incident wave in the expressions for M⃗n
and N⃗n.

We can then write down the general forms for the scattered and transmitted fields as

E⃗scat = −
E0

K sin 𝜁

∞∑
n=−∞

(−i)n
[

bnN⃗
(3)
n + ianM⃗

(3)
n

]
(7.16)

H⃗scat = −
E0

𝜔𝜇 sin 𝜁

∞∑
n=−∞

(−i)n
[

bnM⃗
(3)
n + ianN⃗

(3)
n

]
(7.17)

E⃗trans = −
E0

K′ sin 𝜁

∞∑
n=−∞

(−i)n
[

dnM⃗
(1)
n + cnN⃗

(1)
n

]
(7.18)
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H⃗trans = −
E0

𝜔𝜇
′ sin 𝜁

∞∑
n=−∞

(−i)n
[

dnM⃗
(1)
n + cnN⃗

(1)
n

]
(7.19)

The notation M⃗
(3)
n , N⃗

(3)
n is intended to remind ourselves that we need to use the appropriate Hankel

function Hn for the scattered wave in the expressions for M⃗n and N⃗n. There’s a bit of a trap here,
because the Hankel function is defined as Hn = Jn ± iYn and you have to pick the one that satisfies
the radiation condition for the harmonic time convention you’re using. Recall that we have sup-
pressed factors of e±i𝜔t throughout. Physicists tend to use “minus” while electrical engineers tend
to use “plus” and also for some reason, use j as the imaginary unit. In addition, don’t forget that the
cylinder has different material properties than the surrounding medium, which we can indicate
via a prime or a subscript or whatever is convenient.

We’ve got four unknown modal coefficients, an, bn, cn, and dn, which we solve for by setting[
E⃗inc + E⃗scat − E⃗trans

]
× êr = 0 and

[
H⃗inc + H⃗scat − H⃗trans

]
× êr = 0 for r = a. The math is a little

tricky because of the cylindrical coordinates, of course, but it’s just a statement that the 𝜙- and
z-components of the electric and magnetic fields are continuous at the surface of the scatterer. Note
that the total field exterior to the scatterer is the incident plus the scattered, so those two together
balance the transmitted field at r = a. Four equations allow you to solve for four unknowns,
but typically what you most want to solve for are only the modal coefficients that determine the
scattered field.

Exercise 7.1 Apply the boundary conditions of continuity of the tangential electric and magnetic
fields to solve for an and bn.

In doing that exercise, I hope that you wrote the system of four equations as a matrix equation,
and then did Cramer’s rule to solve for the coefficients. I’m not going to write that all out for you
here because I am transcribing the treatment of [2] who write:

an =
CnVn − BnDn

WnVn + i(Dn)2 bn =
WnBn + iDnCn

WnVn + i(Dn)2 (7.20)

where we define 𝜉 = Ka sin 𝜁 , 𝜂 = Ka
√

m2 − cos2
𝜁 , and have assumed neither the cylinder nor the

surrounding medium is magnetic, so 𝜇 = 𝜇
′. The index of refraction of the cylinder is m. The rest

of the details are

Dn = n cos 𝜁𝜂Jn(𝜂)H
(1)
n (𝜉)

(
𝜉

2

𝜂
2 − 1

)
Bn = 𝜉

[
m2
𝜉J′n(𝜉)Jn(𝜉) − 𝜂Jn(𝜂)J′n(𝜉)

]
Cn = n cos 𝜁𝜂Jn(𝜂)Jn(𝜉)

(
𝜉

2

𝜂
2 − 1

)
Vn = 𝜉

[
m2
𝜉J′n(𝜂)H

(1)
n (𝜉) − 𝜂Jn(𝜂)H′(1)

n (𝜉)
]

Wn = i𝜉
[
𝜂Jn(𝜂)H

′(1)
n (𝜉) − 𝜉J′n(𝜂)H

(1)
n (𝜉)

]
Note carefully that prime indicates differentiation with respect to argument for the Bessel and Han-
kel functions, and we’ve indicated with the superscript (1) which of the two versions of the Hankel
function we’re using. In addition, notice that the denominators of an and bn are identical, which
should make good sense to you if you solved the system via Cramer’s rule; the denominator is the
determinant of the coefficient matrix, of course.
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I realize that you’ve probably lost hope that I was ever going to invoke 𝜁 = 90∘ for the
normal-incidence case and simplify everything. Go ahead and simplify the above expressions and
see if you find that an = 0 and with x = Ka

bn =
Jn(mx)J′n(x) − mJ′n(mx)Jn(x)

Jn(mx)H′(1)
n (x) − mJ′n(mx)H(1)

n (x)
(7.21)

Numerical implementation of that is pretty straightforward these days. It used to matter a lot,
numerically, to write the Bessel and Hankel functions in logarithmic-derivative forms, that is,
J′n(x)∕Jn(x) and so on. I don’t know whether that will matter to you, but wanted to mention it just
in case. Sometimes when you plot the scattering behavior, it looks for all the world like numer-
ical garbage when in reality the many spikey resonances are real physical behavior. It could be
numerical garbage, though.

7.1.2 Incident E-Field Perpendicular to the xz-Plane

That was the polarization where the electric field is parallel to the cylinder axis. It’s the one where
your radar signal will give the strongest backscatter from a powerline at normal incidence, which
matters if you’re flying in a helicopter at night, but this scattering behavior isn’t very interesting. The
good news is that we can go through this same procedure and find the answer for the other polar-
ization. If you had solved that one using Cramer’s rule, you’ll see from that how similar things are.

For this polarization, we write the incident electric field as:

E⃗inc = E0êye−ik(r sin 𝜁 cos𝜙+z cos 𝜁 )

= −i
E0

K sin 𝜁

∞∑
n=−∞

(−i)nM⃗
(1)
n (7.22)

and the curl of this gives the incident magnetic field. We assume the same forms for the scattered
and transmitted fields as before

E⃗scat = −
E0

K sin 𝜁

∞∑
n=−∞

(−i)n
[

bnN⃗
(3)
n + ianM⃗

(3)
n

]
(7.23)

H⃗scat = −
E0

𝜔𝜇 sin 𝜁

∞∑
n=−∞

(−i)n
[

bnM⃗
(3)
n + ianN⃗

(3)
n

]
(7.24)

E⃗trans = −
E0

K′ sin 𝜁

∞∑
n=−∞

(−i)n
[

dnM⃗
(1)
n + cnN⃗

(1)
n

]
(7.25)

H⃗trans = −
E0

𝜔𝜇
′ sin 𝜁

∞∑
n=−∞

(−i)n
[

dnM⃗
(1)
n + cnN⃗

(1)
n

]
(7.26)

and after some manipulations, we find that for this polarization

an = −
AnVn − iCnDn

WnVn + i(Dn)2 bn = −i
WnCn + iDnAn

WnVn + i(Dn)2 (7.27)

with An = i𝜉
[
𝜉J′n(𝜂)Jn(𝜉) − 𝜂Jn(𝜂)J′n(𝜉)

]
and the others the same as before. At normal incidence bn

vanishes and we have
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an =
mJ′n(x)Jn(mx) − Jn(x)J′n(mx)

mJn(mx)H′(1)
n (x) − J′n(mx)H(1)

n (x)
(7.28)

OK, so now we have exact expressions for the electric and magnetic fields scattered by an infi-
nite circular cylinder. You should be able to code them up and make some plots to explore how
the scattering behavior changes as the size parameter, Ka, and index of refraction, m, are varied.
The problem you’ll almost immediately face is whether or not your results are correct. Bessel and
Hankel functions are a little unfamiliar, and there’s always the chance that a typo or three has crept
in along the way. It’s important to have classic results to compare against. To wit, Figure 7.2 shows
the special case where the cylinder is a perfect electrical conductor.

But, of course, the question is what exactly is being plotted? Backscattering means 𝜙 = 180∘,
but the key thing to know is that the Hankel function has been replaced with its large-argument
approximation:

H(1)
n (Kr) →

√
2
𝜋Kr

eiKr(−i)ne−i𝜋∕4 (7.29)

and so people typically don’t plot things as a function of Kr because this is the only place it shows
up in the expression for the scattered field. Think about the 1D problems we considered, where it
was the reflection and transmission coefficients that we cared about. Sometimes people would plot
the absolute value of these and call them reflectance and transmission, but some authors plot the
magnitude squared. The backscatter cross section in Figure 7.2 is probably the magnitude squared
of what’s left when you plug in 𝜙 = 180∘ and then invoke the large-argument approximation for
the Hankel function to yank the r-dependence out from the infinite summation. There are probably
also some normalization factors. Everybody seems to do this a bit differently.
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Figure 7.2 Backscattering from a perfectly electrically conducting (PEC) cylinder, with the electric field
polarized perpendicular to the cylinder axis. The plot for parallel polarization isn’t very interesting, so it’s
not shown here.
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Figure 7.3 Normalized scattering cross sections for a dielectric cylinder with m = 2.0 (a) and m = 2.5
(b) for both polarizations of the normally-incident plane wave.

Exercise 7.2 Go back and repeat the aforementioned analysis but with the cylinder a perfect
conductor, and then reproduce the plot in Figure 7.2. You may also then want to make the corre-
sponding plot for the other polarization to confirm/rebut my assertion that it’s boring.

In Figure 7.3, I’ve sketched from Kerker [3] the backscatter cross sections for dielectric cylinders
with index of refraction m = 2 and m = 2.5. Both polarizations are shown, although I haven’t indi-
cated which is the parallel and which is perpendicular. I’m hoping that you’ll be interested enough
to reproduce the plots, figuring out by trial and error exactly what Kerker is plotting and what nor-
malization factors he’s using. I’m deliberately being a little coy about such things because it’s useful
to be able to figure that sort of thing out as you’re getting your code running and then verifying it.

One more bit of esoterica. Our summation was over n from −∞ to ∞, but many authors sum over
n from zero to ∞, which is equivalent because they introduce the symbol 𝜖n that has the value 1
when n = 0 and 2 otherwise. They will then write sin n𝜙 or cos n𝜙 instead of ein𝜙.

Another common thing to plot is the scattering cross section. Bear with me for just a minute.
The Poynting vector is ⃗S = 1

2
ℜ

{
E⃗ × H⃗

∗}
and if we integrate the Poynting vector for the scattered

field of a unit length over a cylindrical surface at a large distance from the cylinder and suitably
normalize it, we get the scattering cross section

Qscat = 2
(Ka)2

∞∑
n=0
𝜖n

(||an
||2 + ||bn

||2) (7.30)

which can then be plotted as a function of Ka for various values of the index of refraction. If the
index of refraction is complex, then typically it will be the extinction cross section which is plotted,
in order to account for scattering plus absorption due to the lossy scatterer. The extinction cross
sections will be

Qext
z = 2

(Ka)2 ℜ
∞∑

n=0
𝜖nan Qext

y = 2
(Ka)2 ℜ

∞∑
n=0
𝜖nbn (7.31)
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When there is no absorption because the index of refraction is real, the corresponding scattering
and extinction cross sections are equivalent. This often provides a convenient consistency check on
your results. One last simplification and then you can go make some plots. Here are the scattering
cross sections for normal incidence on a perfectly conducting cylinder, for example, a power line
at radar frequencies. For the z-polarized incident electric field

𝜎 = 4
K

∞∑
n=0
𝜖n

||||| Jn(Ka)

H(1)
n (Ka)

|||||
2

(7.32)

and for the y-polarized incident electric field

𝜎 = 4
K

∞∑
n=0
𝜖n

||||| J′n(Ka)

H′(1)
n (Ka)

|||||
2

(7.33)

I hope you noticed that for the scattering cross sections, the magnitude-squared happens inside the
infinite summation. For the backscatter cross section, the magnitude squared computation hap-
pens outside the infinite summation. If you are having trouble matching your plots to the ones I
included earlier, double check that isn’t an issue. Once you do get your code up and running and
validated by matching these sorts of plots from standard texts, go ahead and make a bunch more
plots. I haven’t included any for complex index of refraction, but you might go back to the sphere
chapter and try some of those values to see whether scattering from cylinders is akin to scattering
from spheres. It might be. It might not be.

7.2 Elastic Wave Scattering

Because solid materials which are opaque to light are transparent to ultrasonic (elastic) waves,
ultrasound has been found to be a powerful tool for noninvasively probing the interior of structural
materials. Ultrasound is routinely used to detect, locate, and qualitatively characterize defects such
as voids, cracks, and inclusions. It is commonly employed for manufacturing quality control and
on-line monitoring of manufacturing processes, as well as the safety and integrity of structural
members. In advanced composite materials ultrasound is used to detect delaminations, irregu-
larities in reinforcing fibers or particles, as well as unwanted inclusions or voids. Ultrasound has
advantages over competing nondestructive evaluation technologies in that the required equipment
is relatively portable, simple to operate and inexpensive, it is safe for the operator, and can be used
for a variety of test specimen shapes.

A quantitative theory of ultrasonic nondestructive evaluation is necessarily more complex than
corresponding electromagnetic or pure acoustic wave propagation and scattering theories. This is
because in the propagation and scattering of elastic waves, a number of other effects must be con-
sidered in a complete and physically accurate theory. Mode-converted waves are generated during
reflection and refraction at material interfaces as well as during diffraction from sharp discontinu-
ities such as crack tips. From an analytical standpoint, difficulties in the rigorous solution of even
the simplest of forward problems in ultrasonic NDE (given an input transducer signal and a specific
defect shape, what is the output transducer signal) in general prevents the quantitative solution of
the inverse problem (given the input and output transducer signals, what is the shape and location
of the material defect), which is the real aim of NDE.

The widespread introduction of advanced composite materials created a need for further develop-
ment of the theoretical models for describing bulk mechanical properties and prediction of material
deterioration and failure. Advanced composite materials and structural members present unique
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difficulties for the prediction of both their mechanical properties and their probable modes of fail-
ure. Although phenomenological and experiment-based models abound, it is most desirable – and
in the long run, most accurate and least expensive – to develop field-theoretical models which
predict bulk properties and failure of advanced composites directly from the known material con-
figuration (microstructural) parameters. The scattering of elastic waves from fibers embedded in
an infinite elastic medium of different elastic material parameters can be deployed to study the
ultrasonic wave interactions in fiber-reinforced organic-matrix composite materials. Unlike invis-
cid fluids, elastic solids have rigidity – they resist shear or distortional deformations as well as
compressional deformations – and as a consequence, shear or transverse waves propagate in solid
elastic media in addition to the familiar compressional sound waves. Neglecting shear waves in
the ultrasonic nondestructive evaluation of solids, for example, leads to incorrect results, because
when purely compressional ultrasonic waves encounter a material discontinuity where reflection,
refraction, diffraction, etc. occur, the resulting scattered waves are in general always combinations
of compressional and shear waves. This mode coupling is a direct consequence of the boundary
conditions, which must be satisfied at the material discontinuity and cannot be avoided or ignored
in a correct description of wave phenomena in solid media. For example, when ultrasound is used
to detect flaws in homogeneous and isotropic materials, such as metals whose grain structure can
be ignored for many frequencies, although the incident wave is purely compressional, the field
scattered from the defect is part compressional and part shear. When there is no scattering, the two
types of waves do propagate independently, with different wave velocities, and can be considered
separately. However, any time there is scattering both types of waves and their mode coupling at
the boundary must be considered.

In reinforced composite materials, coatings on the reinforcements and interface layers between
the fibers and the binder are present. The coatings may be purposefully applied in order to enhance
material lifetime, and curing processes generate an interface layer between the two media. This
is important because the coating/interface alters the stresses surrounding the reinforcements,
and if designed properly may be useful in minimizing material failure. More importantly, the
interfacial properties change with environmental deterioration of fiber-reinforced organic matrix
composites.

Recall that for an isotropic, homogeneous, and linearly elastic medium, the equation of motion is

𝜌𝜕
2
t u⃗ − 𝜇∇2u⃗ − (𝜇 + 𝜆)∇(∇ ⋅ u⃗) = 0 (7.34)

where 𝜌 is the constant medium density, 𝜇 and 𝜆 are elastic Lamé parameters and u⃗ is the displace-
ment vector. After some manipulation and assuming harmonic time variation e−i𝜔t, the vector wave
equation may be written as:

(∇2 + K2)u⃗ −
(

1 − K2

k2

)
∇(∇ ⋅ u⃗) = 0 (7.35)

Here K = 𝜔∕cT and k = 𝜔∕cL are the propagation constants for transverse and longitudinal elas-
tic waves with cT =

√
𝜇∕𝜌 and cL =

√
(𝜆 + 2𝜇)∕𝜌 defining the transverse and longitudinal wave

speeds, respectively.
Of course, we don’t want to deal with the vector wave equation, so we invoke Clebsch’s theorem,

which says that any vector field can be written as the sum of a longitudinal and a transverse part u⃗ =
u⃗L + u⃗T . The longitudinal vector field has no curl and the transverse vector field has no divergence.
This will allow us to write the longitudinal field as the gradient of a scalar generating function
and the two polarizations of the transverse field as the curl and then curl-curl of other generating
functions. This is exactly analogous to what we did for elastic wave scattering from spheres.
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Both the reinforcing fibers (cylindrical scatterers) and the binder of the composite will be consid-
ered to be elastic solids for which the aforementioned equations hold. The binder will be referred to
as medium 1 and the fibers (cylinders of radius r = a) will be medium 2. Later we’ll briefly consider
the region a < r < b to be a distinct third elastic medium representing an interface layer between
the fiber and the matrix.

We take a cylindrical coordinate system (r, 𝜃, z) and consider an infinite elastic cylinder, whose
axis coincides with the z-axis so that the cylindrical surface coincides with constant coordinate
surface r = a.

For scattering from cylindrical inclusions, we define three scalar generating functions
ΠL,ΠSH ,ΠSV in terms of the displacements as:

u⃗L = 1
k
∇ΠL

(
∇2 + k2)ΠL = 0

u⃗SV = 1
K
∇ × (ẑΠSV )

(
∇2 + K2)ΠSV = 0 (7.36)

u⃗SH =
( 1

K

)
∇ × ∇ × (ẑΠSH)

(
∇2 + K2)ΠSH = 0

where the displacement is a linear combination of longitudinal and transverse displacement modes
u⃗ = u⃗L + u⃗SH + u⃗SV .

The displacement and stress components can be found from

ur =
(−1

k

)
𝜕

𝜕r
(ΠL) +

1
r
𝜕

𝜕𝜃

(ΠSV ) +
1
K

𝜕
2

𝜕r𝜕z
(ΠSH)

u
𝜃
=
(−1

k

) 1
r
𝜕

𝜕𝜃

(ΠL) +
𝜕

𝜕r
(ΠSV ) −

1
K

1
r
𝜕

2

𝜕z𝜕𝜃
(ΠSH) (7.37)

uz =
−1
k
𝜕

𝜕z
(ΠL) + 0 − 1

K

(
1
r
𝜕

𝜕r
+ 𝜕

2

𝜕r2 + 𝜕
2

𝜕𝜃
2

)
(ΠSH)

𝜎rr = (𝜆 + 2𝜇)
𝜕ur

𝜕r
+ 𝜆

(
1
r
𝜕u

𝜃

𝜕𝜃

+
ur

r
+
𝜕uz

𝜕z

)
𝜎r𝜃 = 𝜇

(
1
r
𝜕ur

𝜕𝜃

+
𝜕u

𝜃

𝜕r
−

u
𝜃

r

)
(7.38)

𝜎rz = 𝜇
(
𝜕uz

𝜕r
+
𝜕ur

𝜕z

)
It’s probably worth writing the stress components out in terms of the scalar generating functions
because we’re going to need them when we apply the boundary conditions.

𝜎rr = −𝜆1
k
∇2ΠL + 2𝜇

[
−1

k
𝜕

2
r ΠL + 𝜕r

(1
4
𝜕
𝜃
ΠSV

)
+ 1

K
𝜕

2
r 𝜕zΠSH

]
𝜎r𝜃 = 2𝜇

[
− 1

kr
𝜕r𝜕𝜃ΠL + 1

kr2 𝜕𝜃ΠL + 1
Kr
𝜕r𝜕𝜃𝜕zΠSH − 1

Kr2 𝜕𝜃𝜕zΠSH

]
+𝜇

[ 1
r2 𝜕

2
𝜃
ΠSV − r𝜕r

(1
r
𝜕rΠSV

)]
𝜎rz = 𝜇

[
−2

k
𝜕r𝜕zΠL + 1

r
𝜕
𝜃
𝜕zΠSV

]
+ 𝜇

K
[
2𝜕r𝜕

2
zΠSH − 𝜕r∇2ΠSH

]
(7.39)

where

∇2Π = 1
r
𝜕r(r𝜕rΠ) +

1
r2 𝜕

2
𝜃
Π + 𝜕2

zΠ
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Exercise 7.3 Although I’ve tried to be careful in type-setting the above equations, you should
certainly check them to make sure that I haven’t made a botch along the way. You could cross-check
with [6–8].

The incident plane wave will be taken to be one of three types. For incident L-waves, we write

u⃗inc
L = (x̂ sin𝜙 + ẑ cos𝜙) eik1(x sin𝜙+z cos𝜙) (7.40)

from which we see that the directions of propagation and displacement are the same. For incident
SV-waves, we write

u⃗inc
SV = −iŷ sin𝜙iK1(r sin𝜙+z cos𝜙) (7.41)

and for incident SH-waves, we write

u⃗inc
SH =

(
−x̂ cos𝜙 sin𝜙 + ẑsin2

𝜙

)
eiK1(x sin𝜙+z cos𝜙) (7.42)

For the two transverse waves, the displacement is transverse to the direction of propagation. Note
that for normal incidence (𝜙 = 90∘), we get

u⃗inc
L = x̂eik1x u⃗inc

SV = −iŷeiK1x u⃗SH = ẑeiKzx (7.43)

The exponential terms can be expanded in terms of cylindrical Bessel functions according to

ei𝛼 cos 𝜃 =
∞∑

n=−∞
inJn(𝛼)ein𝜃 (7.44)

so we can write the three incident plane wave potentials in terms of cylinder functions as:

Πinc
L =

∑
n

in+1Jn(k1r sin𝜙)ein𝜃eik1z cos𝜙

Πinc
SV = 1

K1

∑
n

inJn(K1r sin𝜙)ein𝜃EiK1z cos𝜙 (7.45)

Πinc
SH = 1

K1

∑
n

inJn(K1r sin𝜙)ein𝜃eiK1z cos𝜙

The boundary conditions for “welded contact” require that the displacements and the normal
surface tractions be continuous at r = a. Since the field exterior to the cylinder is the sum of the
incident and scattered fields and the field inside the scatterer is only the transmitted field, we write

𝜎
inc
rr + 𝜎scat

rr = 𝜎
trans
rr 𝜎

inc
r𝜃 + 𝜎scat

r𝜃 = 𝜎
trans
r𝜃 (7.46)

and

uinc
r + uscat

r = utrans
r uinc

𝜃
+ uscat

𝜃
= utrans

𝜃
(7.47)

where 𝜎inc
rz + 𝜎scat

rz = 𝜎
trans
rz and uinc

z + uscat
z = utrans

z are redundant and will be dropped.

7.2.1 Scattering Due to an Incident L-Wave

When a purely compressional plane wave of unit amplitude and with wave number k1 is incident
on the surface of the cylindrical scatterer, scattered as well as transmitted longitudinal and vertical
shear modes will be generated. We can write the following expressions for the scalar potentials of
the incident, scattered and transmitted waves

Πinc
L =

∑
n

in+1Jn(k1r sin𝜙)ein𝜃eik1z cos𝜙
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Πscat
L =

∑
n

in+1aL
nH(1)

n (k1r sin𝜙)ein𝜃eik1z cos𝜙

Πscat
SV = 1

K1

∑
n

inbL
nH(1)

n (K1r sin𝜙)ein𝜃eiK1z cos𝜙 (7.48)

Πtrans
L =

∑
n

in+1cL
nJn(k2r sin𝜙)ein𝜃eik2z cos𝜙

Πtrans
SV = 1

K2

∑
n

indL
nJn(K2r sin𝜙)ein𝜃eiK2z cos𝜙

Here aL
n–dL

n are four unknown modal coefficients to be determined from the continuity of stress and
displacement at r = a. After some manipulations, we can write these four equations as a matrix
equation. After some more manipulations, we can solve the matrix equation via Cramer’s rule to
find the modal coefficients. Here you go:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(K1a)2 − n2 + k1aH(1)′

n (k1a)
H(1)

n (k1a)
n
(

1 − K1aH(1)′
n (K1a)

H(1)
n (K1a)

)
𝜇2
𝜇1

[
1
2
(K2a)2 − n2 + k2aJ′n(k2a)

Jn(k2a)

]
n
(

1 − k1aH(1)′
n (k1a)

H(1)
n (k1a)

)
n2 − 1

2
(K1a)2 − K1aH(1)′

n (K1a)
H(1)

n (K1a)
n 𝜇2
𝜇1

(
1 − k2aJ′n(k2a)

Jn(k2a)

)
k1aH(1)′

n (k1a)
H(1)

n (k1a)
−n k2aJ′n(k2a)

Jn(k2a)

−n K1aH(1)′
n (K1a)

H(1)
n (K1a)

−n

n 𝜇2
𝜇1

(
1 − K2aJ′n(K2a)

Jn(K2a)

)
𝜇2
𝜇1

[
n2 − 1

2
(K2a)2 − K2aJ′n(K2a)

Jn(K2a)

]
−n

K2aJ′n(K2a)
Jn(K2a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

aL
nH(1)

n (k1a)

bL
nH(1)

n (K1a)

−cL
nJn(k2a)

−dL
nJn(K2a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= in+1Jn(k1a)

⎡⎢⎢⎢⎢⎢⎣

1
2
(K1a)2 − n2 + k1aJ′n(k1a)

Jn(k1a)

n
(

1 − k1aJ′n(k1a)
Jn(k1a)

)
k1aJ′n(k1a)

Jn(k1a)
−n

⎤⎥⎥⎥⎥⎥⎦
(7.49)

Δ0 = −n2 𝜇2

𝜇1

(
k2aJ′n(k2a)

Jn(k2a)
−

k1aH(1)′
n (k1a)

H(1)
n (k1a)

)[
1
2
(K1a)2

(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−1
2
(K2a)2

(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− 1

)]
− n2 𝜇2

𝜇1

(
K2aJ′n(K2a)

Jn(K2a)
−

K1aH(1)′
n (K1a)

H(1)
n (K1a)

)

×

[
1
2
(K1a)2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)
− 1

2
(K2a)2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)]

−
(k2aJ′n(k2a)

Jn(k2a)
K2aJ′n(K2a)

Jn(K2a)
− n2

){
n2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− 1

)

−

[
k1aH(1)′

n (k1a)

H(1)
n (k1a)

+ 1
2
(K1a)2 − n2

][
K1aH(1)′

n (K1a)

H(1)
n (K1a)

+ 1
2
(K1a)2 − n2

]}
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+
𝜇2

𝜇1

(
k2aJ′n(k2a)

Jn(k2a)
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− n2

){
n2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−

[
k1aH(1)′

n (k1a)

H(1)
n (k1a)

+ 1
2
(K1a)2 − n2

][K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}

+
𝜇2

𝜇1

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

K2aJ′n(K2a)
Jn(K2a)

− n2

){
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)(

K1aH(1)′
n (K1a)

H(1)
n (K1a)

− 1

)

−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

][
K1aH(1)′

n (K1a)

H(1)
n (K1a)

+ 1
2
(K1a)2 − n2

]}

−
(
𝜇2

𝜇1

)2
(

k1aH(1)′
n (k1a)

H(1)
n (k1a)

K1aH(1)′
n (K1a)

H(1)
n (K1a)

− n2

){
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)

×
(K2aJ′n(K2a)

Jn(K2a)
− 1

)
−

[k2aJ′n(k2a)
Jn(k2a)

+ 1
2
(K2a)2 − n2

] [K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}

aL
n =

{
−n2 𝜇2

𝜇1

(k2aJ′n(k2a)
Jn(k2a)

−
k1aJ′n(k1a)

Jn(k1a)

)[
1
2
(K1a)2

(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−1
2
(K2a)2

(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− 1

)]
− n2 𝜇2

𝜇1

(
K2aJ′n(K2a)

Jn(K2a)
−

K1aH(1)′
n (K1a)

H(1)
n (K1a)

)

×
[

1
2
(K1a)2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)
− 1

2
(K2a)2

(k1aJ′n(k1a)
Jn(k1a)

− 1
)]

−
(k2aJ′n(k2a)

Jn(k2a)
K2aJ′n(K2a)

Jn(K2a)
− n2

){
n2

(k1aJ′n(k1a)
Jn(k1a)

− 1
)(

K1aH(1)′
n (K1a)

H(1)
n (K1a)

− 1

)

−
[k1aJ′n(k1a)

Jn(k1a)
+ 1

2
(K1a)2 − n2

][
K1aH(1)′

n (K1a)

H(1)
n (K1a)

+ 1
2
(K1a)2 − n2

]}

+
𝜇2

𝜇1

(
k2aJ′n(k2a)

Jn(k2a)
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− n2

){
n2

(k1aJ′n(k1a)
Jn(k1a)

− 1
)(K2aJ′n(K2a)

Jn(K2a)
− 1

)
−
[k1aJ′n(k1a)

Jn(k1a)
+ 1

2
(K1a)2 − n2

] [K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}

+
𝜇2

𝜇1

(k1aJ′n(k1a)
Jn(k1a)

K2aJ′n(K2a)
Jn(K2a)

− n2
){

n2
(k2aJ′n(k2a)

Jn(k2a)
− 1

)(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− 1

)

−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

][
K1aH(1)′

n (K1a)

H(1)
n (K1a)

+ 1
2
(K1a)2 − n2

]}

−
(
𝜇2

𝜇1

)2
(

k1aJ′n(k1a)
Jn(k1a)

K1aH(1)′
n (K1a)

H(1)
n (K1a)

− n2

){
n2
(k2aJ′n(k2a)

Jn(k2a)
− 1

)(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

] [K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}} Jn(k1a)

H(1)
n (k1a)

1
Δ0
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bL
n = n

(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

−
K1aJ′n(K1a)

Jn(K1a)

){(
𝜇2

𝜇1

)2[
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)(K2aJ′n(K2a)

Jn(K2a)
− 1

)
−
(k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

)(K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

)]
+
𝜇2

𝜇1

[(k2aJ′n(k2a)
Jn(k2a)

+ 1
2
(K2a)2 − n2

)(
n2 −

K2aJ′n(K2a)
Jn(K2a)

)
−
(K2aJ′n(K2a)

Jn(K2a)
+ 1

2
(K2a)2 − n2

)(
n2 −

k2aJ′n(k2a)
Jn(k2a)

)]
+
𝜇2

𝜇1

1
2
(K1a)2

(
1
2
(K2a)2 +

k2aJ′n(k2a)
Jn(k2a)

K2aJ′n(K2a)
Jn(K2a)

− n2
)

−
(k2aJ′n(k2a)

Jn(k2a)
K2aJ′n(K2a)

Jn(K2a)
− n2

)(1
2
(K1a)2 + 1 − n2

)} Jn(K1a)

H(1)
n (k1a)

1
Δ0

I haven’t included the transmitted wave amplitudes, cL
n and dL

n but they can be found here [8]. In
addition, note that there are no SH modes present because they are not coupled to the L and SV
waves during scattering.

Recall that for the electromagnetic scattering case, we calculated the Poynting vector. Here, the
total flow of scattered elastic energy in the radial direction through a closed surface of unit length
in z can be represented by the radial component of the energy flux vector j = 𝜎ij𝜕tuj, which may
be decomposed into longitudinal and transverse parts.

The differential scattering cross sections are then defined as the time-averaged radial component
of the far-field energy flux vector, normalized by the intensity of the incident wave. These are often
plotted vs. 𝜃 to show the angular variation of the scattering. The backscatter cross section is the
differential scattering cross section for 𝜃 = 180∘. There is no mode-coupled term for the backscatter
cross section.

Integrating over a cylindrical surface with radius r ≫ a and dividing by the geometric cross
section (𝜋a2), we obtain the normalized scattering cross section for a unit length of the cylinder

qL
scat =

4
(k1a)2

∑
n

(|||||Δ
L
1

Δ0

|||||
2

+
(

k1

K1

)3|||||Δ
L
3

Δ0

|||||
2)

(7.50)

The extinction cross section also accounts for energy removed via absorption in the scatterer

qL
ext =

4
(k1a)2

∑
n
ℜ

(
ΔL

1

Δ0

)
(7.51)

and in the absence of absorption qscat = qext, which can provide a helpful consistency check given
the complex equations for the Δ’s involved.

You would be within your rights to ask a question along the lines of: How many terms in
the infinite summation are needed? There are rules-of-thumb worked out in the days when
computers where slow and precision was limited. Something along the lines of n = x = 4x1∕3 + 2,
where x is the size parameter of the cylinder, might work pretty well. The series will con-
verge, so run things a bit and see what works best. It’s not like you have to pedal the
computer.
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I assume you noticed that at some point during the aforementioned derivations I seem to have
stopped considering oblique incidence, that is, began assuming that 𝜙 = 90∘. I could have argued
that things are complicated enough without that, or that most of the interesting physical behav-
ior is in the 2D problem. Both would be true, but then you might wonder why I didn’t just start
out with the 𝜙 = 90∘ case and try to improve the clarity of the exposition. Good point. There is
some literature on this subject, of course, but most authors only show results for the 2D case. It
might be wishful thinking to assume that not much happens for angles close to normal incidence
because we remember a few chapters ago when our assumptions about reflection from an inter-
face broke down beyond some critical angle when surface waves were generated. Here, we might
expect leaky pseudo-Stoneley waves that travel on the matrix-cylinder interface to show up in some
cases.

Exercise 7.4 Go back through the analysis and see if you can figure out if there’s some sort of
critical angle 𝜙crit at which the way we’ve formulated the scattering problem breaks down.

There are presumably many applications where oblique-incidence scattering from a cylindrical
inclusion would matter. Figure 7.4 has various plots of backscattering from cylinders done as
part of work to model Integrated Backscatter (IB) ultrasound measurements of trans-laminar
reinforced (TLR) composites [9] for aerospace applications. In order to make composite structures
more damage tolerant, that is, tougher, through-thickness stitches or pins are used to help
prevent delaminations after impact or other in-service wear and tear. The IB method, adapted
from cardiac applications of medical ultrasonography, integrates the backscattered signal over
a range of angles in order to produce a “parameter image” with the IB as an area is scanned.
The clinical machines would have a button that the sonographer could push to show either
the standard B-mode image or the IB parameter image and/or other parameter images. In our
paradigm, the IB is a rudimentary form of data engineering and it seems a little silly to be
toggling back and forth between different images individually formed from the collection of
RF waveforms, but that’s just because we’ve gotten used to the idea of ML systems being able
to deal with lots and lots of data as inputs. Clinicians need to have the amount of information
presented to them strictly limited to the capacity of the human visual system. Don’t get too
snooty though. Your fancy data-engineered, machine-learning expert system isn’t licensed to
practice medicine and therefore cannot, by law, make any diagnoses. The first AI system for
reading mammograms got slapped down hard when they made claims about computer-aided
diagnosis, CADX . They had to back track and only claim to suggest to the clinician spots that
might be suspicious and where they could maybe take a second look with their licensed human
eyeballs.

In order to compare models with experiments (for nonsentient composites) a series of
hockey-puck-sized samples were produced with various fibers, wires, etc. molded into them. The
backscatter was measured as the samples were rotated, and we found that there wasn’t all that
much interesting behavior once we integrated, which is why I’m just showing you the backscatter
vs. ka for normal incidence later.

7.2.2 Scattering of Acoustic Waves from an Elastic Cylinder

If we set the shear modulus 𝜇1 equal to zero in the medium surrounding the cylinder, no shear
waves will be present in the scattered field and our results reduce to those for an ordinary acoustic
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Figure 7.4 Backscattering from elastic cylinders. (a) is for an air-filled hole in plexiglas. (b) is for a glass
fiber in acrylic. (c) is for a carbon fiber in acrylic. (d) is for a Kevlar fiber in lucite. (e) is for a copper wire in
lucite. (f) is for a chrome wire in lucite.
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wave scattering from an elastic cylinder. In this case bL
n = 0 and

Δ0 =
k1aH(1)′

n (k1a)

H(1)
n (k1a)

{
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)(K2aJ′n(K2a)

Jn(K2a)
− 1

)
−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

] [K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}
−1

2
(K2a)2 𝜌1

𝜌2

{k2aJ′n(k2a)
Jn(k2a)

[K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]
− n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)}

aL
n =

Jn(k1a)

H(1)
n (k1a)

{k1aJ′n(k1a)
Jn(k1a)

{
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)(K2aJ′n(K2a)

Jn(K2a)
− 1
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−
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Jn(K2a)

+ 1
2
(K2a)2 − n2

]
−n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)}}

1
Δ0

This agrees with the results of James Faran2 who first derived the exact solution for acoustic wave
scattering from an elastic cylinder [10]. Faran’s scattering patterns for various metal cylinders in
water are reproduced in Figures 7.5 and 7.6. We can be fairly confident because this paper has
been cited more than 1200 times since 1951. Figure 7.7 illustrates an application to autonomous
robotics.

The consistency of the results can be further checked by considering the further limit where the
shear moduli of both media vanish, which returns the result for an acoustic wave scattering from
an acoustic cylinder. We get bL

n = 0 and

aL
n =

𝜌1k2Jn(k1a)J′n(k2a) − 𝜌2k1Jn(k1a)J′n(k2a)

𝜌1k2H(1)
n (k1a)J′n(k2a) − 𝜌2k1H(1)

n (k1a)J′n(k2a)
(7.52)

At this point, you’re probably thinking that this special case of a fluid cylinder in another fluid has
no physical application. While spherical bubbles in air or liquid drops in water or even immiscible
liquids which don’t mix, for example, oil and water, all make good sense, this one doesn’t. Except
that in medical ultrasound it’s common to treat soft tissues acoustically, meaning that their solid
nature doesn’t affect things very much. Hence, a cylindrical blood vessel in the body could be
treated as a cylinder of fluid in another fluid. There are innumerable clinical applications of this,
of course, but let me mention just one. Angiogenesis is the development of new blood vessels.
Cancerous tumors are especially crafty at causing angiogenesis in order to feed their rapacious
growth. Mapping out these blood vessels can be important because the number and tortuosity
of them can indicate malignancy. Remember, we’re all about data engineering here. Using
scattering analysis to help clinicians extract diagnostic information from medical ultrasound is
exactly that.

2 Originally from Glendale, Ohio, James Faran graduated from Washington & Jefferson College and the Harvard
School of Engineering. During World War II he worked in the Harvard Underwater Sound Laboratory, after which
he worked as an electronics engineer for the General Radio Company of West Concord, MA for 36 years designing
computer test equipment. Jim Faran played a variety of brass instruments including trombone, baritone horn, and
tuba. He marched with the Concord Band, and was the author of an article published in Horizon magazine called
“How to Buy a Tuba.” He died at age 87 in 2008.
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Figure 7.5 Scattering patterns for 0.093 in diameter brass (a) 0.09375 in diameter steel (b) and 0.0925
diameter aluminum (c) cylinders, with f = 1 MHz.

7.2.3 Scattering Due to an Incident T-Wave

If a transverse wave with wave number K1 = 𝜔

√
𝜌1∕𝜇1 is incident upon the surface of the cylinder,

scattered and transmitted longitudinal, vertical shear, and horizontal shear waves will be excited.
We can follow the same solution procedure as before, and it won’t really even be all that much more
complicated because only the L and SV will be coupled this time too. The SH waves will be all by
themselves and we can do that algebra separately.

The incident, scattered, and transmitted waves are represented by

Πinc
SV = 1

K1

∑
n

inJn(K1r sin𝜙)ein𝜃eiK1z cos𝜙

Πscat
L =

∑
n

in+1aT
n H(1)

n (k1r sin𝜙)ein𝜃eik1z cos𝜙

Πscat
SV = 1

K1

∑
n

inbT
n H(1)

n (K1r sin𝜙)ein𝜃eiK1z cos𝜙

Πtrans
L =

∑
n

in+1cT
n Jn(k2r sin𝜙)ein𝜃eik2z cos𝜙
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Figure 7.6 Scattering patterns for 0.032 in diameter brass (a) 0.032 in diameter steel (b) and 0.0625
diameter brass (c) cylinders. Scattering patterns for 0.0625 in diameter copper (d) 0.0625 in diameter steel
(e) and 0.0625 diameter rigid (f) cylinders. f = 1 MHz.
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Figure 7.7 A mobile robot which we named rWilliam has a forward-looking 50 kHz pulse-echo scanner
mounted in front. As the ultrasound beam sweeps across an upright cylindrical scatterer, the backscatter vs.
angle will be symmetric near the peak for a round metal light pole, whereas the bark on a tree will
introduce asymmetry into the backscattering because the roughness of the bark is similar in size to the
wavelength of sound in air at 50 kHz. Such features can also be used to distinguish big trees from small
trees based on backscattering [11] because even so-called “narrow beam” transducers have beams that are
too divergent to image in the manner that is done for medical ultrasound.
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Πtrans
SV = 1

K2

∑
n

indT
n Jn(K2r sin𝜙)ein𝜃eiK2z cos𝜙 (7.53)

Πinc
SH = 1

K1

∑
n

inJn(K1r sin𝜙)ein𝜃eiK1z cos𝜙

Πscat
SH = 1

K1

∑
n

ineT
n H(1)

n (K1r sin𝜙)ein𝜃eiK1z cos𝜙

Πtrans
SH = 1

K2

∑
n

inf T
n Jn(K2r sin𝜙)ein𝜃eiK2z cos𝜙

where aT
n –f T

n are six more modal coefficients to be found from the boundary conditions. The SH
case will give a 2 × 2 system, which is straightforward to solve. The coupled L–SV system is 4 × 4
as before and somewhat more tedious.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(K1a)2 − n2 − k1aH(1)′

n (k1a)
H(1)

n (k1a)
n
(

1 − K1aH(1)′
n (K1a)

H(1)
n (K1a)

)
𝜇2
𝜇1

[
1
2
(K2a)2 − n2 + k2aJ′n(k2a)

Jn(k2a)

]
n
(

1 − k1aH(1)′
n (k1a)

H(1)
n (k1a)

)
n2 − 1

2
(K1a)2 − K1aH(1)′

n (K1a)
H(1)

n (K1a)
n 𝜇2
𝜇1

(
1 − k2aJ′n(k2a)

Jn(k2a)

)
k1aH(1)′

n (k1a)
H(1)

n (k1a)
−n k2aJ′n(k2a)

Jn(k2a)

−n K1aH(1)′
n (K1a)

H(1)
n (K1a)
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n 𝜇2
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1 − K2aJ′n(K2a)

Jn(K2a)
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n2 − 1

2
(K2a)2 − K2aJ′n(K2a)

Jn(K2a)

]
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[
n2 − 1

2
(K2a)2 − K2aJ′n(K2a)

Jn(K2a)

]
K2aJ′n(K2a)

Jn(K2a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

aT
n H(1)

n (k1a)

bT
n H(1)

n (K1a)

−cT
n Jn(k2a)

−dT
n Jn(K2a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= inJn(K1a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
(

1 − K1aJ′n(K1a)
Jn(K1a)
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n2 − 1

2
(K1a)2 − K1aJ′n(K1a)

Jn(K1a)
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K1aJ′n(K1a)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
You should note in the matrix system above that the coefficient matrix is as we had for the L-wave

incidence case, so that means that Δ0 will be the same here too. The other parts of the coefficients
are as follows.

aT
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(
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Jn(K2a)
− 1

)
−
(k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

)(K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

)]
+
𝜇2

𝜇1

[(k2aJ′n(k2a)
Jn(k2a)

+ 1
2
(K2a)2 − n2

)(
n2 −

K2aJ′n(K2a)
Jn(K2a)

)
−
(K2aJ′n(K2a)

Jn(K2a)
+ 1

2
(K2a)2 − n2

)(
n2 −

k2aJ′n(k2a)
Jn(k2a)

)]
+
𝜇2

𝜇1

1
2
(K1a)2

(
1
2
(K2a)2 +

k2aJ′n(k2a)
Jn(k2a)

K2aJ′n(K2a)
Jn(K2a)

− n2
)



7.2 Elastic Wave Scattering 231

+
(k2aJ′n(k2a)

Jn(k2a)
K2aJ′n(K2a)

Jn(K2a)
− n2

)(1
2
(K1a)2 + 1 − n2

)} Jn(k1a)

H(1)
n (K1a)

1
Δ0

bT
n =

{
−n2 𝜇2

𝜇1

(
k2aJ′n(k2a)

Jn(k2a)
−

k1aH(1)′
n (k1a)

H(1)
n (k1a)

)[
1
2
(K1a)2

(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−1
2
(K2a)2

(K1aJ′n(K1a)
Jn(K1a)

− 1
)]

− n2 𝜇2

𝜇1

(K2aJ′n(K2a)
Jn(K2a)

−
K1aJ′n(K1a)

Jn(K1a)

)

×
[

1
2
(K1a)2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)

− 1
2
(K2a)2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)

−
(k2aJ′n(k2a)

Jn(k2a)
K2aJ′n(K2a)

Jn(K2a)
− n2

){
n2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)(K1aJ′n(K1a)
Jn(K1a)

− 1
)

−

[
k1aH(1)′

n (k1a)

H(1)
n (k1a)

+ 1
2
(K1a)2 − n2

][K1aJ′n(K1a)
Jn(K1a)

+ 1
2
(K1a)2 − n2

]}

+
𝜇2

𝜇1

(k2aJ′n(k2a)
Jn(k2a)

K1aJ′n(K1a)
Jn(K1a)

− n2
){

n2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−

[
k1aH(1)′

n (k1a)

H(1)
n (k1a)

+ 1
2
(K1a)2 − n2

][K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}

+
𝜇2

𝜇1

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

K2aJ′n(K2a)
Jn(K2a)

− n2

){
n2

(k2aJ′n(k2a)
Jn(k2a)

− 1
)(K1aJ′n(K1a)

Jn(K1a)
− 1

)
−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

] [K1aJ′n(K1a)
Jn(K1a)

+ 1
2
(K1a)2 − n2

]}

−
(
𝜇2

𝜇1

)2
(

k1aH(1)′
n (k1a)

H(1)
n (k1a)

K1aJ′n(K1a)
Jn(K1a)

− n2

){
n2
(k2aJ′n(k2a)

Jn(k2a)
− 1

)(K2aJ′n(K2a)
Jn(K2a)

− 1
)

−
[k2aJ′n(k2a)

Jn(k2a)
+ 1

2
(K2a)2 − n2

] [K2aJ′n(K2a)
Jn(K2a)

+ 1
2
(K2a)2 − n2

]}} Jn(K1a)

H(1)
n (K1a)

1
Δ0

7.2.3.1 Scattering from an Acoustic Cylinder
In the limiting case where the shear rigidity of the cylinder vanishes 𝜇2 → 0 we can write the coeffi-
cients for shear wave scattering from a fluid-filled cylinder. I’ve even included the modal coefficient
for the SH-wave incidence case.
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(7.54)

Exercise 7.5 Find the expression for eT
n for SH wave scattering from an elastic cylinder in an

elastic medium, and then take the limit where 𝜇2∕𝜇1 → 0 to verify the aforementioned expression
for eT

n .

The total flow of scattered elastic energy in the radial direction through a closed surface can be
represented by the radial component of the energy flux vector as in the longitudinal case, which
may be decomposed into longitudinal and transverse parts. Although the L and SV modes are cou-
pled at the boundary, they will propagate independently in the present linear field approximation.
As before, intensities are the time-averaged radial component of the far-field energy flux vector,
and if we divide the scattered intensities by the intensity of the incident plane wave and integrate
over 𝜃 we can write the scattering cross section, per unit length, as:

qT
n = 4

(k1a)2

∑
n

((
K1

k1

)3||aT
n
||2 + ||bT

n
||2 + ||eT

n
||2
)

(7.55)

In Figures 7.8 and 7.9, we show the angular scattering patterns for boron cylinders in aluminum,
for L and SV plane wave incidence, respectively, and for two different size parameters. Note that
there are both L and SV scattered waves for either L or SV wave incidence. You might wonder
whether there’s some regularity to these scattering patterns such that we could develop some rules
of thumb for various size parameters and/or materials combinations. Nope, sorry. You just have to
plot them and see what you get. These plots are from a book that’s about 30 years old [7], which
has lots of the detailed derivations for scattering from cylinders (and spheres) and also includes
FORTRAN code. That was a selling point back in the day, although the book was quite expensive
and not all that widely known.

I’ve sketched the polar plots from the book so you can have something to compare against once
you get your code working, but don’t get too concerned about details of the shapes of the lobes. I
may not have accurately reproduced them, and when making polar plots of sharp lobes, they can
get a little distorted if too few angles were used.

You’re probably wondering why boron cylinders in aluminum. The answer is probably that in
those days there was quite a lot of research on advanced composite materials, particularly for
high-speed aeronautics applications. NASA had a program to develop a Mach 2.4 civilian airliner,
which had an emphasis on developing new materials that would be strong enough and light
enough so that such aircraft could carry both passengers and fuel. Boron filaments in aluminum
had been used for military applications, but cost would be a significant constraint for civilian uses.
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0.2 0.04

6.0 0.09

Figure 7.8 Differential scattering cross sections for boron cylinders in aluminum, with incident L plane
wave indicated by the arrow. (a) and (b) are for ka = 1, while (c) and (d) are for ka = 10. (a) and (c) show the
angular distribution of the scattered L wave. (b) and (d) show the corresponding mode-converted shear
wave. Note the different scales indicated by the number.

In addition, such materials would need to be inspected, both when new and as they aged, and
ultrasound could be employed for that.

Exercise 7.6 Plot the SH-incidence differential scattering cross sections for boron cylinders in
aluminum.

7.2.4 Limiting Cases

We can consider two limiting cases where the cylinder is a void and rigid, respectively. For scattering
from a cylindrical hole, the boundary conditions are that the normal surface tractions, 𝜎rr and 𝜎r𝜃
are zero at r = a, which gives two equations to solve for the scattered L and SV wave amplitudes.
SH waves are uncoupled, as always. We find that:

Δ0 = n2

(
k1aH(1)′

n (k1a)

H(1)
n (k1a)

− 1

)(
K1aH(1)′

n (K1a)

H(1)
n (K1a)

− 1

)

−

[
k1aH(1)′

n (k1a)

H(1)
n (k1a)

+ 1
2
(K1a)2 − n2

][
K1aH(1)′

n (K1a)

H(1)
n (K1a)

+ 1
2
(K1a)2 − n2

]
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Figure 7.9 Differential scattering cross sections for boron cylinders in aluminum, with incident SV plane
wave indicated by the arrow. (a) and (b) are for Ka = 1, while (c) and (d) are for Ka = 10. (a) and (c) show the
angular distribution of the scattered SV wave. (b) and (d) show the corresponding mode-converted L wave.
The plots are normalized to highlight the differences.
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eT
n = −

Jn(K1a)

H(1)
n (K1a)

For a rigid scatterer, the boundary conditions at r = a are that the displacements, ur and u
𝜃
,

vanish. Although the algebra is fairly simple, this is a little nonphysical because it also assumes
that the scatterer is infinitely dense. Nevertheless, the scattering amplitudes come out as:
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Figure 7.10 illustrates the angular scattering patterns for a cylindrical hole in a metal, which
I’ve reproduced from [12]. Figure 7.11 shows three plots scanned from that 1958 paper where
computations were compared to measurements, done as a part of a doctoral dissertation at Har-
vard.3 Both the experiments and the computations would have been exceedingly difficult. My doc-
toral advisor was doing a PhD at Yale in those days, and he once mentioned traveling to Boston “to

Figure 7.10 White’s Figure 4 reproduced from [12] showing
normalized angular scattering of elastic waves from a
cylindrical hole in an elastic solid with Poisson’s ratio of 1/3.
According to the text of [12] “The solid curve on the left … is
the angular distribution for normally polarized shear waves
incident and compressional waves scattered; the dashed curve
on the left is for normally polarized shear waves incident and
scattered. The solid curve on the right … is for compressional
waves incident and scattered, and the dashed curve on the
right is for axially polarized shear waves incident and
scattered.” The size parameters are ka = 2.0 and Ka = 4.0 and
the incident wave is vertical. Source: Adapted from [12].

1.0

2.0

3.0

4.0

3 Richard M. White was a professor (emeritus) in the UC Berkeley Department of Electrical Engineering and
Computer Sciences and a Co-Founding Director of the Berkeley Sensor & Actuator Center. His research interests
included wireless microsensors, energy scavenging devices for use in electric power systems, and portable
particulate matter monitors for measuring concentrations of airborne aerosols and diesel exhaust particulates. Prior
to joining the faculty at UC Berkeley in 1963, Professor White conducted microwave device research at General
Electric. In addition to the 2003 Rayleigh Award of the IEEE for seminal contributions to surface acoustic wave
technology, Professor White was a member of the National Academy of Engineering, a Fellow of the IEEE and the
American Association for the Advancement of Science, and was the recipient of many academic awards. Professor
White earned his AB and AM degrees in Engineering Science and Applied Physics from Harvard University, and his
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Figure 7.11 Figures 5, 6, and 7 from [12] showing angular scattering of elastic waves from an elastic
cylinder. I’ve included scans of White’s figures because I’m so impressed with how difficult it was in the
1950s to do both the experiments and the simulations in order to compare them. To quote Jesse Pinkman
from Breaking Bad a bit out of context, “Yeah Mr. White! Yeah science!” In addition, drugs are bad, don’t do
drugs. And don’t bury all seven barrels of money in the same hole, geez. (a) is measured and computed
“compression-to-compression” scattering at an empty bore, measured at a frequency of 3.73 MHz.
(b) compares the measured and computed normally polarized “shear-to-shear” scattering at an empty bore,
also at a frequency of 3.73 MHz. Note that the computed scattering patterns here and in Figure 7.10 don’t
reproduce all the lobes in the forward-scattering quadrant, which isn’t surprising given the computational
limits in those days. White speculates that what’s actually going on is “interference between the scattered
and incident waves.” He doesn’t show many measured data points in (b), because presumably similar
interference exists in the forward direction for the shear-to-shear scattering; “it was for this reason that the
tedious shear pickup measurements were not made in that region.” (c) shows the measured
“compression-to-compression” scattering at a mercury-filled bore, again at a frequency of 3.73 MHz. The
comparison is to computations for an empty bore, although White had formulated the equations for the
case of a nonviscous fluid scatterer. Presumably Professor F.V. Hunt told him at some point that he already
had enough to graduate and not to try to include the solid and fluid scatterer computations in his
dissertation. Source: White [12]/with permission of AIP Publishing LLC.

use the computer.” Although [12] sets up the problem for elastic wave scattering from a cylindrical
elastic inclusion, his computations were only for the limiting case of a cylindrical void. Most of
the measurements were also for a cylindrical void, although the third plot in Figure 7.11 is for a
fluid-filled cylindrical void. The fluid is mercury. Yikes. I assume that soon-to-be-Dr. White wanted
to get some measurements for elastic wave scattering from an elastic cylinder, but the exterior mate-
rial was a large aluminum cylinder so there’s no obvious way to get a solid elastic cylinder firmly
embedded into that. I suppose he could have poured molten lead into the empty bore and let that
harden. Other alloys that melt at a low-enough temperature could be done as well, presumably
drilling out the bore each time before refilling it. There are all sorts of plastics and whatnot that
come to mind these days, but we’re talking the 1950s here, so that was in the future. In the movie
“The Graduate” which is based on a 1963 book, there’s a famous scene where Mr. McGuire takes
Dustin Hoffman’s character, Benjamin, off to the side and says “Plastics there’s a great future in
plastics.” In addition, there’s the obvious point that dissertation research can’t go on forever. At
some point, the student has accomplished enough and it’s time to graduate.

Figure 7.12 shows several differential scattering cross sections for cylindrical holes in aluminum,
but as a function of size parameter (ka) rather than angle. These are reproduced from a ca. 1991

PhD degree in Applied Physics in 1956, also from Harvard. Dick White was still active in his field when he died on
17 August 2020.
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Figure 7.12 Differential scattering cross sections for cylindrical holes in aluminum. (a) and (b) are for
incident L wave. (c) and (d) are for incident SV waves. (a) and (c) are scattering at 90∘, where dashed line is
the mode-converted waves. (b) and (d) is for backscattering, where there is no mode-converted wave.

book [7], which included FORTRAN code listings. Computationally these weren’t much of a chal-
lenge to do in those days. It should be even easier for you because the formulas that you’ll be plotting
are written out explicitly earlier.

Exercise 7.7 Plot elastic wave scattering from cylindrical holes in Al.

The aforementioned analysis allows us to calculate dynamical properties of interest. Recall that
we had suppressed e−i𝜔t time variation, that is, we’re doing the analysis in frequency domain. That
means that the analysis also applies to consideration of a reinforcing fiber in a matrix, where the
composite material is experiencing a vibration. Of interest in the development of new advanced
composites is whether vibrations might lead to stress concentrations (Figures 7.13 and 7.14) at the
interfaces.4

7.3 Plate Wave Scattering

Ultrasonic guided waves, Lamb waves, are useful for evaluating the integrity of plate and shell
structures common in many applications. Tomographic reconstruction with Lamb waves allows

4 Subhendu Datta is Professor Emeritus of Mechanical Engineering at UC Boulder. His research deals with
analytical and numerical modeling of wave propagation and scattering in solid media, including ultrasonic
techniques for material characterization and nondestructive evaluation, elastic guided waves in layered, composite,
and anisotropic plates and cylinders, and waves in thin layers and coatings.



238 7 Scattering from Cylinders

(a)
0

0.5

1

1.5

2

Radial

kb
2 4 6 8 10

(b)
0

0.1

0.2

0.3

0.4

Shear

kb
2 4 6 8 10

(c)
0

0.2

0.4

0.6

0.8

Hoop

kb
2 4 6 8 10

Figure 7.13 Dynamic stress concentrations for a boron fiber in epoxy. The three plots are for the radial (a),
shear (b), and hoop (c) stresses at the interface. Solid lines are for lateral and backscattering directions,
respectively.
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Figure 7.14 Solving the similar but more algebraically involved problem of scattering from a two-layer
cylindrical shell allows us to calculate dynamic stress concentrations. In these plots, the radial (solid line)
shear (dash-dot line), and hoop (short-dash line) stress concentrations are shown. Plots (a) and (b) are for a
boron shell deposited on a tungsten core embedded in a matrix of epoxy. Plots (c) and (d) are for a silicon
carbide fiber with a carbon core embedded in an aluminum matrix. See [13, 14] for details, or if you prefer
you might instead look at Dr. Bogan’s doctoral dissertation if that turns out to be more convenient for you.
His Boston University doctoral dissertation has the same title as [14] and also includes FORTRAN code if
you’re interested in that sort of thing. Some university libraries have scanned all their dissertations and
made them freely available. They’re usually much better quality than the reduced-size,
printed-from-microfilm versions we used to be satisfied with.

for the accurate reconstruction of the variation of quantities of interest throughout the investigated
region, and it presents the data as a quantitative map. The location, shape, and extent of flaws can
then be easily extracted from this tomographic image. The scattering of Lamb waves from severe
flaws introduces artifacts in such reconstructions, however. When Lamb waves scatter from inho-
mogeneities, some of the energy is converted into other modes, which have different dispersion
properties and propagate at different speeds. Moreover, the through-thickness displacement pro-
files are different for the different modes, which complicates rather severely the application of the
boundary conditions. Fortunately, higher-order plate theory can be used to derive analytical solu-
tions for the scattering of the lowest-order symmetric Lamb wave from a circular inclusion, such
as an isolated through hole or in-plane disk (rivet) in plates.

We can use the Mindlin5 higher-order plate theory [15–19] to model the scattering of the lowest
Lamb waves. The simplest plate theories only describe the dispersionless region of the S0 curve,
but in our measurements, we make use of the dispersion of the S0 wave, so we need a theory that
more accurately models the behavior of the S0 Lamb wave. Using methods similar to the previous
sections, analytical expressions for the scattering of S0 Lamb waves from a cylindrical inclusion in

5 See https://history.aip.org/phn/11607001.html or https://www.nytimes.com/1987/11/24/obituaries/raymond-d-
mindlin-engineering-professor.html.

https://history.aip.org/phn/11607001.html
https://www.nytimes.com/1987/11/24/obituaries/raymond-d-mindlin-engineering-professor.html
https://www.nytimes.com/1987/11/24/obituaries/raymond-d-mindlin-engineering-professor.html
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a plate are derived for an incident plane wave. The expressions are explicitly evaluated and plots
shown for the cases of a hole in a plate and inserted disks. But first, flexural waves.

7.3.1 Flexural Wave Scattering from Cylinders

For the lowest-order antisymmetric Lamb wave mode, we can model the scattering from rivets by
the following procedure. Other modes, especially the lowest order symmetric modes can be treated
also as scattering problems, but the analysis differs since the plate equation is not appropriate for
dilatational waves.

The displacement of a plate in bending is given by

D∇2∇2
𝑤 + 2b𝜌𝜕2

t 𝑤 = q

where𝑤 is the transverse displacement. Here 2b is the thickness of the plate, 𝜌 is its density, and D
is given by

D = 2𝜇I
1 − 𝜈

= 2Eb3

3(1 − 𝜇2)
I = 2b3∕3

where E, 𝜈, 𝜇 are Young’s modulus, Poisson’s ratio, and rigidity of the material. Note the cylindrical
scatterer of radius r = a is at the origin. For q = 0 and harmonic wave motion solutions to the
equation of motion are

𝑤(x, y, t) =
[
W1(x, y) + W2(x, y)

]
e−i𝜔t

where W1,2 satisfy

(∇2 + 𝛾2)W1 = 0 (∇2 − 𝛾2)W2 = 0

with 𝛾 = 𝜔

√
2b𝜌∕D. Note that W1 represents the part of the flexural wave that travels with the speed

cf = 𝛾

√
D∕2b𝜌 and W2 represents the part attenuating as it progresses.

If the scatterer is at a large distance from the source, the attenuation will reduce W2 to a negligible
amount and only W1 needs to be considered as the incident flexural wave. We write

𝑤
inc = 𝑤0ei(𝛾1x−𝜔t) = 𝑤0

∞∑
n=0
𝜖ninJn(𝛾1r) cos n𝜃e−i𝜔t

In polar coordinates, the solutions for W1,2 are of the form H(1),(2)
n (𝛾r)e±in𝜃 and H(1),(2)

n (i𝛾r)e±in𝜃 ,
respectively, so we can write the scattered flexural wave

𝑤
scat = 𝑤0

∞∑
n=0
𝜖nin

[
AnH(1)

n (𝛾1r) + BnH(1)
n (i𝛾1r)

]
cos n𝜃e−i𝜔t

Inside the rivet, the refracted waves can be represented as:

𝑤
refr = 𝑤0

∞∑
n=0
𝜖nin [CnJn(𝛾2r) + DnJn(i𝛾2r)

]
cos n𝜃e−i𝜔t

where for the rivet, the physical properties are different, so the material parameters have the sub-
script 2. We will denote the region r > a as 1 and r < a as 2. In polar coordinates, the boundary
conditions at r = a are continuity of transverse displacements and shear forces as well as slope and
bending moment. The needed bending moments and transverse shear forces are given by

Mrr = −D
[
𝜈∇2

𝑤 + (1 − 𝜈)𝜕2
r𝑤

]
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and

Vr = −D𝜕r(∇2
𝑤) − 1

r
𝜕
𝜃

{
D(1 − 𝜈)𝜕r

(1
r
𝜕
𝜃
𝑤

)}
For a rivet the following four conditions must be satisfied at the boundary r = a:

𝑤
inc +𝑤scat = 𝑤

refr
𝜕r𝑤

inc + 𝜕r𝑤
scat = 𝜕r𝑤

refr

Minc
rr + Mscat

rr = Mrefr
rr V inc

r + V scat
r = V refr

r

These give rise to four simultaneous equations for the unknown coefficients An,Bn,Cn,Dn. Solving
this system algebraically gives for An = − Jn(𝛾1a)

H(1)
n (𝛾1a)

Δ1
Δ0

:
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⎛⎜⎜⎜⎝
𝛾1aJ′n(𝛾1a)

Jn(𝛾1a)
− i𝛾1aH(1)′

n (i𝛾1a)
H(1)

n (i𝛾1a)

𝛾1aJ′n(𝛾1a)
Jn(𝛾1a)

+ i𝛾1aH(1)′
n (i𝛾1a)

J(1)n (i𝛾1a)

⎞⎟⎟⎟⎠
(

i𝛾2aJ′n(i𝛾2a)
Jn(i𝛾2a)

− n2 p − 1
x2

2

)
p − 1

x2
1

+
⎛⎜⎜⎝
𝛾2aJ′n(𝛾2a)

Jn(𝛾2a)
− i𝛾2aJ′n(i𝛾2a)

Jn(i𝛾2a)
𝛾2aJ′n(𝛾2a)

Jn(𝛾2a)
+ i𝛾2aJ′n(i𝛾2a)

Jn(i𝛾2a)

⎞⎟⎟⎠
i𝛾1aH(1)′

n (i𝛾1a)

H(1)
n (i𝛾1a)

p − 1
x2

2

⎫⎪⎬⎪⎭
+
(

x1

x2

)2
(
𝛾1aJ′n(𝛾1a)

Jn(𝛾1a)
−

i𝛾1aH(1)′
n (i𝛾1a)

H(1)
n (i𝛾1a)

){
2n2 p − 1

x2
2

[
1 +

i𝛾2aJ′n(i𝛾2a)
Jn(i𝛾2a)

p − 1
x2

2

]

+
(
𝛾2aJ′n(𝛾2a)

Jn(𝛾2a)
−

i𝛾2aJ′n(i𝛾2a)
Jn(i𝛾2a)

)[
2 +

i𝛾1aH(1)′
n (i𝛾1a)

H(1)
n (i𝛾1a)

p − 1
x2

1
+

i𝛾2aJ′n(i𝛾2a)
Jn(i𝛾2a)

p − 1
x2

2

]}
where we have defined p = D2∕D1 and x2 = (𝛾a)2∕(𝜈 − 1). Similar expressions can be derived for
Bn − Dn in order to specify analytically the scattered and refracted fields that result from interaction
of the incident flexural wave with the rivet.



242 7 Scattering from Cylinders

In the far-field of the rivet, the scattered field will consist of only the propagating part, so Bn is
not needed. In addition, for large 𝛾1r we have

Hn(𝛾1r) →
√

2
i𝜋𝛾1r

ei(𝛾1r−n𝜋∕2)

so we can write

𝑤
scatt →

√
2

i𝜋𝛾1r
ei(𝛾1r)

∞∑
n=0
𝜖nfn(𝜃) (7.57)

where

fn(𝜃) = 𝑤0e−i𝜔tAn cos n𝜃 (7.58)

7.3.2 Dilatational Wave Scattering

In order to model the scattering of the lowest-order symmetric Lamb wave modes from rivets, it is
necessary to go to a slightly more complicated theory than was used for the antisymmetric modes.
This is because the simplest plate theories give only that portion of the S0 curve which is disper-
sionless. Since we are interested in modeling measurements made on the shoulder of that curve,
we need to account for the dispersive effects. Without resorting to a full three-dimensional elastic-
ity treatment, Kane and Mindlin [15] provide us with an appropriate theory for dilatational plate
wave scattering from rivets.

As in the previous section, we consider an infinite plate that is homogeneous, isotropic, and
linearly elastic. We assume that the plate is bounded by the planes z = ±h and that there is a disk
of radius r = a at the origin of a cylindrical coordinate system. The model rivet (disk) is a similar
material, but with arbitrarily different material parameters. We describe the plate by density 𝜌 and
Lamé parameters 𝜆, 𝜇. The rivet is described by 𝜌′ and 𝜆′, 𝜇′. The wave speeds for bulk longitudinal
and transverse waves are

cL =

√
𝜆 + 2𝜇
𝜌

cT =
√
𝜇

𝜌

and the limiting value of the wave speed for plate waves is

cP =

√
4𝜇(𝜆 + 𝜇)
𝜌(𝜆 + 2𝜇)

For thin plates, we assume that the components of displacement in cylindrical coordinates are
approximated sufficiently well by

ur(r, 𝜃, t) = 𝑣r(r, 𝜃, t) u
𝜃
(r, 𝜃, t) = 𝑣

𝜃
(r, 𝜃, t) uz(r, 𝜃, t) =

z
h
𝑣z(r, 𝜃, t)

and then we introduce three independent displacement potentials 𝜙1(r, 𝜃), 𝜙2(r, 𝜃), 𝜓(r, 𝜃) defined
by

𝑣r =
(
𝜕𝜙1

𝜕r
+
𝜕𝜙2

𝜕r
+ 1

r
𝜕𝜓

𝜕𝜃

)
e−i𝜔t (7.59)

𝑣
𝜃
=
(

1
r
𝜕𝜙1

𝜕𝜃

+ 1
r
𝜕𝜙2

𝜕𝜃

− 𝜕𝜓

𝜕r

)
e−i𝜔t

𝑣z =
(
𝜎1𝜙1 + 𝜎2𝜙2

)
e−i𝜔t
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We must then consider solutions of the scalar Helmholtz equation:(
∇2 + k2

1
)
𝜙1 = 0

(
∇2 + k2

2
)
𝜙1 = 0

(
∇2 + K2)

𝜓1 = 0

In these equations, we have used the terms

𝜎1,2 = h(𝜆 + 𝜇)

𝜋𝜆∕
√

12

(
k2

1,2 −
𝜔

2

c2
L

)
K2 = 𝜔

2

c2
T

k2
1,2 = 3

2

(
𝜋

2

12h

)2 ⎧⎪⎨⎪⎩
(

c2
L

c2
T
+ 1

)
𝜔

2

𝜔
2
0
−

c2
P

c2
T
±

√√√√√[(
c2

L

c2
T
+ 1

)
𝜔

2

𝜔
2
0
−

c2
P

c2
T

]2

+ 4
c2

L

c2
T

𝜔
2

𝜔
2
0

(
1 − 𝜔

2

𝜔
2
0

)⎫⎪⎬⎪⎭
where 𝜔2

0 = 𝜋

√
cL∕4h2. The stress components needed are then given by, suppressing e−i𝜔t time

variation,

𝜎rr = (𝜆 + 2𝜇)
𝜕𝑣r

𝜕r
+ 𝜆

(
1
r
𝜕𝑣

𝜃

𝜕𝜃

+
𝑣r

r
+
𝑣z

h

)
(7.60)

𝜎r𝜃 = 𝜇
(

1
r
𝜕𝑣r

𝜕𝜃

+
𝜕𝑣

𝜃

𝜕r
−
𝑣
𝜃

r

)
𝜎rz = 𝜇

(
z
h
𝜕𝑣z

𝜕r

)
Now consider an incident plane wave described by

𝜙
inc
1 = eik1x

𝜙
inc
2 = 𝜓

inc = 0 (7.61)

and expand scattered and transmitted waves in terms of the general solutions of the scalar wave
equation:

𝜙
scat
1 =

∞∑
n=−∞

AninHn(k1r)ein𝜃

𝜙
scat
2 =

∞∑
n=−∞

BninHn(k2r)ein𝜃

𝜓
scat =

∞∑
n=−∞

CninHn(Kr)ein𝜃 (7.62)

𝜙
trans
1 =

∞∑
n=−∞

A′
ninJn(k′

1r)ein𝜃

𝜙
trans
2 =

∞∑
n=−∞

B′
ninJn(k′

2r)ein𝜃

𝜓
trans =

∞∑
n=−∞

C′
ninJn(K′r)ein𝜃

where An,… ,C′
n are unknown modal coefficients to be determined from the boundary conditions.

Note that the incident plane wave potential can also be expanded in cylindrical functions:

𝜙
inc
1 = eik1r cos 𝜃 =

∞∑
n=−∞

inJn(k1r)ein𝜃 (7.63)
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Figure 7.15 Polar plots of the magnitude of the scattered amplitude of a plane wave incident from the left
on isolated holes with three different radii. Source: McKeon and Hinders [20]/with permission of Elsevier.

Applying boundary conditions, we find the coefficients to be An = Δ1
Δ0

and Bn = Δ2
Δ0

, where

𝛽1,2 = 1
2

c2
L

c2
T

(
𝜎1,2

h
− (k1,2a)2

)
+ n2 −

𝜎1,2

h
− 1

and

𝛽
′
1,2 = 1

2
c2

L

c2
T

(
𝜎
′
1,2

h
− (k′

1,2a)2

)
+ n2 −

𝜎
′
1,2

h
− 1

and the Cramer’s rule determinants can be written in closed form (on the following page) as an
exact solution to this approximate formulation of plate wave scattering from cylindrical inclusions.
It’s then a simple matter to put the pieces together and make plots. Figure 7.15 shows the angular
distribution of scattering for three different-sized holes in a plate. Figure 7.16 is for a steel disc in
an aluminum plate, as an approximation to Lamb wave scattering from rivets; Figure 7.17 is for a
titanium disk. They show the scattering for varying values of 𝜔∕𝜔0 and a∕h.

Δ0 =
(k′

1aJ′n(k′
1a)

Jn(k′
1a)

−
k′

2aJ′n(k′
2a)

Jn(k′
2a)

)[(k2aH′
n(k2a)

Hn(k2a)
− 1

)
𝛽1 −

(k1aH′
n(k1a)

Hn(k1a)
− 1

)
𝛽2

]
+𝜇

′

𝜇

(k1aH′
n(k1a)

Hn(k1a)
−

k2aH′
n(k2a)

Hn(k2a)

)[(k′
1aJ′n(k′

1a)
Jn(k′

1a)
− 1

)
𝛽
′
2 −

(k′
2aJ′n(k′

2a)
Jn(k′

2a)
− 1

)
𝛽
′
1

]
(7.64)

Δ1 =
Jn(k1a)
Hn(k1a)

{(k′
1aJ′n(k′

1a)
Jn(k′

1a)
−

k′
2aJ′n(k′

2a)
Jn(k′

2a)

)[(k2aH′
n(k2a)

Hn(k2a)
− 1

)
𝛽1 −

(k1aJ′n(k1a)
Jn(k1a)

− 1
)
𝛽2

]
+ 𝜇

′

𝜇

(k1aJ′n(k1a)
Jn(k1a)

−
k2aH′

n(k2a)
Hn(k2a)
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1aJ′n(k′

1a)
Jn(k′

1a)
− 1

)
𝛽
′
2 −

(k′
2aJ′n(k′

2a)
Jn(k′
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)
𝛽
′
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]}



7.3 Plate Wave Scattering 245

–0.25

–0.5 0.5–1

–2 –1.5 –1 –0.5 0.5 1 1.5 107.552.5–2.5–5

–1 1 2

–0.5

–0.5

0.5

–1

1

–0.75

0.75

0.5

0.25

–0.25
–0.5
–0.75

0.75
0.5
0.25 1

1
2
3

2
3

Figure 7.16 Angular far-field scattering for in-plane steel disk in aluminum plate. In each, the solid line is
for 𝜔∕𝜔0 = 0.1, the long-short dashed line is for 𝜔∕𝜔0 = 0.5, and the dashed line is for 𝜔∕𝜔0 = 0.9. The
four plots are for (a) a∕h = 0.1, (c) a∕h = 0.5, (c) a∕h = 1.0, and (d) a∕h = 10.
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Figure 7.17 Angular far-field scattering for in-plane titanium disk in aluminum plate. In each, the solid
line is for 𝜔∕𝜔0 = 0.1, the long-short dashed line is for 𝜔∕𝜔0 = 0.5, and the dashed line is for 𝜔∕𝜔0 = 0.9.
The four plots are for (a) a∕h = 0.1, (b) a∕h = 0.5, (c) a∕h = 1.0, and (d) a∕h = 10.
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Δ2 =
Jn(k1a)
Hn(k2a)

(k′
1aJ′n(k′

1a)
Jn(k′

1a)
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2a)
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𝜇
′

𝜇
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n(k1a)

Hn(k1a)
−

k2aH′
n(k2a)
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𝛽
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7.4 Thermal “Wave” Scattering

If you’ve ever farted with a lapdog snoozing on your lap, you may have been surprised how fast the
dog leaped off your lap and ran to the other side of the room. You may have thought that your dog
was startled by the “plip” sound, but that’s not what just happened. Think about the last time you
walked that dog, perhaps expecting to get some exercise yourself along the way. Mostly your dog was
stopping to sniff the smells along the way and every few feet or so contribute to the neighborhood
smell story. Especially if your dog has just spent the afternoon watching out the window while you
were at work, it’s pretty important to fill in the rest of the story about who walked past earlier. I let
my dog lead the way when we go out for a walk because it all smells the same to me anyway. Not to
her, though. Her sense of smell is much more sensitive than mine, and she is able to pick up quite
a lot of information from smells and how they dissipate over time.

When you farted, even if it wasn’t loud at all, you overwhelmed the sensitive smeller of your
lapdog. Think of it this way. If you’re temporarily blinded by a flash of lightning nearby, there’s
nothing you can do but cover your ears to protect from the imminent clap of thunder. There will
be a slight delay, which depends on distance because the speed of light is much faster than the
speed of sound. The clap of your butt cheeks when you farted just now announced the imminent
nose-blinding flash of your fart. You really should eat better, you know. Your dog jumped down
from the sofa and ran across the room because she didn’t want her nose to be overwhelmed. She
wasn’t scared. She’s trying to retain the ability to track subtle variations in smells, especially their
dissipations, which is how she tells time. I assume you’ve noticed that she’s waiting at the win-
dow for you to come home and provide walks, food, and scritches. She wasn’t pining for you all
afternoon. She knew when you were coming. Even if she was snoozing when you pulled into the
driveway, she heard your car and opened at least one eye to see you come up the front walk. You
may even have heard her see you because she’s a yippie little lapdog, after all.

The point of all that is that light and sound are wave phenomena of the sort we’ve been discussing,
and wave propagation is fundamentally different from diffusion phenomena. But we often do our
scattering analysis in frequency domain, so mathematically, the distinction between waves and
diffusion comes down to whether the wave number is real or complex. If we’re in the habit of
making the wave number complex in order to introduce attenuation ad hoc or finite conductivity
formally, it’s a very small leap to apply our mathematical machinery to diffusion phenomena like
the conduction of heat in solids.

Infrared thermography is a bread-and-butter NDE method, although it has undergone profound
changes in recent years as the cost of IR cameras dropped dramatically. These cameras used to cost
as much as my house; now they are attachments for smartphones that cost about the same as those
earbuds you keep leaving behind in your Ubers. The essence of thermography is applying pulses
of heat with flashlamps, or step functions of heat with quartz lamps, or time-harmonic heat flow
with chopped lasers, etc. and then monitoring the heat flow into and back out of (or through) a
solid structure with an IR camera. Back in the days when the cost of the camera was a significant
barrier to entry, there weren’t all that many people doing thermography and academic feuds tended
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to develop. I used to have to caution my graduate students to not get sucked into arguments like
whether it was proper to use the term “thermal waves” or not.

One application of interest was using IR thermography to evaluate exotic new fiber-reinforced
composite materials for high-speed (supersonic) aircraft structures, and chopped lasers were being
used to apply heat in a controlled manner.6 The graduate student who was doing the experiments
was unsure how to model his results, so we went to the chalkboard and I sketched the problem for
him and sent him off to do the algebra and make some plots.

The problem geometry assumes a heat source at some distance r0 from a fiber of radius r = a at
the origin of a cylindrical coordinate system. The matrix is material 1 and the fiber embedded in
the matrix is material 2. Since the excitation is via a chopped laser, we suppress a harmonic time
variation ei𝜔t and the heat equation becomes(

∇2 − i𝜔
𝛼

)
𝑣 = 0 (7.65)

where k =
√
𝜔∕i𝛼 and 𝛼 is the thermal diffusivity and 𝑣 is the scalar temperature field. This allows

us to deal with the Helmholtz equation as usual.

∇2
𝑣 + k2

𝑣 = 0 (7.66)

which has the general solution in cylindrical coordinates of a linear combination of Bessel func-
tions and sinusoids as before. The total field in material 1 will be incident plus scattered, with a
transmitted field in the fiber. Boundary conditions are simply that the temperature and normal
derivative of the temperature (heat flux) must be continuous at the surface, r = a. We can write the
incident, scattered, and transmitted fields as:

𝑣inc =
∞∑

n=0
𝜖nAnJn(k1r) cos n𝜃

𝑣scat =
∞∑

n=0
𝜖nBnH(2)

n (k1r)
(

cos n𝜃
sin n𝜃

)
𝑣scat =

∞∑
n=0
𝜖nCnJn(k2r)

(
cos n𝜃
sin n𝜃

)
where An = (−1)nH(1)

n (−k1r0)∕4𝛼1 and Bn, Cn are unknown modal coefficients determined from the
boundary conditions enforced at r = a

𝑣inc + 𝑣scat = 𝑣trans K1

(
𝜕𝑣inc

𝜕r
+
𝜕𝑣scat

𝜕r

)
= K2

𝜕𝑣trans

𝜕r
(7.67)

where K1 and K2 are the thermal conductivities of the matrix and fiber, respectively. The algebra
is straightforward enough that I’ve just done it myself, because it simplifies things to write things
in logarithmic-derivative form and I found the answers that Pierre derived a little confusing. Also,
orthogonality means that we’ll need to choose cos n𝜃 as the angular form for both the scattered

6 See Emeric and Winfree [21]. The last time I chatted at length with Dr. Emeric was in the Fall of 2019. He was just
about to start a new job as Global Head of Research & Development, Monitoring and Analytics for Philips at their
new Innovation Hub in Cambridge, MA and we were discussing several research projects we might-could do once
he got settled in and knew what his budget for sponsoring university research was going to be. What neither of us
knew was that COVID-19 was about to hit, and Philips was going to catch hell for not having gotten the stockpile of
ventilators refreshed in time for the pandemic that nobody saw coming. In the summer of 2020, Dr. Emeric moved
to Ortho Clinical Diagnostics as Global Head Of Platform Research & Development. We take COVID test kits for
granted now, but think back to what it was like in the summer of 2020. . . .
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and transmitted waves. Feel free to check my algebra to verify that the scattered and transmitted
amplitude modal coefficients are

Bn = An
Jn(k1a)

H(2)
n (k1a)

⎛⎜⎜⎝
k1aJ′n(k1a)

Jn(k1a)
− K2

K1

k2aJ′n(k2a)
Jn(k2a)

k1aH′
n(k1a)

Hn(k1a)
+ K2

K1

k2aJ′n(k2a)
Jn(k2a)

⎞⎟⎟⎠ (7.68)

Cn = An
Jn(k1a)
Jn(k2a)

⎛⎜⎜⎝
k1aH′

n(k1a)
Hn(k1a)

− k1aJ′n(k1a)
Jn(k1a)

k1aH′
n(k1a)

Hn(k1a)
+ K2

K1

k2aJ′n(k2a)
Jn(k2a)

⎞⎟⎟⎠ (7.69)

Exercise 7.8 After you check my algebra, and perhaps notice that this looks pretty similar to the
analogous acoustic case, make some plots of the scattered temperature distribution for a fiber with
a = 75μm and excitation frequencies in the range 1–20 Hz. You’ll have to look up some typical
properties for thermal conductivity and diffusivity.

Scattering plots aren’t going to be all that interesting because heat conduction is diffusive, of
course. What you’ll find, though, is that if the thermal “wave propagation” for the fiber is slower
than the matrix then the heat will tend to build up in front of the fiber, whereas if the fiber conducts
heat better than the matrix the heat will build up behind the fiber. Make some plots, but take care
that you’re implementing the Bessel functions properly because their both k1a and k2a are complex.
After you’ve made some plots, you can then form an opinion about whether it’s appropriate to use
the term “thermal wave” scattering for this. I’m pretty sure that Skip Favro would still say no. Steve
Shepard (https://www.thermalwave.com) would probably be fine with that.

7.5 Scattering from a Semicircular Gap in a Ground Plane

There’s an issue that we haven’t had to worry about quite yet that is about to matter quite a lot:
orthogonality. For both the spherical and cylindrical scatterers, the eigenfunctions that we’ve used
are orthogonal functions, and it turned out that the summations of terms didn’t really make things
any more complicated. At some point, we just solved the boundary value problems as if those sum-
mations didn’t matter. Because they didn’t. Rather than explaining all about orthogonality, I think
it’s better for me to show you a situation where the orthogonality is incomplete and we can’t just
solve the boundary-value problem term-by-term.

The issue came up in the late 1980s as we were working to understand more and more subtle
features of radar scattering, either to make one’s own air vehicles stealthier or to try to identify scat-
tering behaviors that would allow one to identify others’ already stealthy air vehicles. Any vehicle is
going to have various doors and hatches and whatnot that open and close, and there’s always going
to be some gap around the edges when they are closed. If your vehicle gets stealthy enough, the
scattering contribution from these sorts of cracks and gaps might be the thing that gives you away.
In some cases, you can fill the gaps with goop or tape them over in order to mask them electromag-
netically, but that’s not really a practical solution. In addition, before going to that sort of trouble,
it seems sensible to see if a scattering model could be used to identify potential vulnerabilities.

The “crack” problem has been studied by many people including Lord Rayleigh, who considered
the problem of plane wave scattering from a half-cylindrical indentation in a ground plane in 1907
[22]. Of course, he wasn’t concerned about counter-low observables problems. He was interested
in optical diffraction. He also couldn’t quite figure out how to attack the cylindrical indentation

https://www.thermalwave.com
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problem, so he solved a similar problem but then didn’t feel the need to go back and update his
title to make it appropriately descriptive. We’ll give him a pass on that because he is Lord Rayleigh
after all, and I find that whenever I read one of his papers, I come away with both technical insights
and new vocabulary words.

The problem that Lord Rayleigh actually solved was electromagnetic scattering from a
half-cylindrical protuberance on a perfectly conducting ground plane. The vocab word is: excres-
cence. It means protuberance, which is also an excellent word but not quite as esoteric. Lord
Rayleigh’s technical insight was to set up the problem with both an incident plane wave and
another plane wave that mirrors it such that the boundary condition for a perfect conductor is
automatically satisfied at the ground plane. All that’s needed is to solve the relatively straight-
forward problem of scattering from a perfectly conducting cylinder, which we did earlier in
this chapter, and the cylindrical excrescence solution pops right out. The thing that makes this
formulation work is that the scatterer is impenetrable, so the “extra” fields for r < a and y < 0
don’t matter. Incomplete orthogonality doesn’t matter either.

What we’re going to do is rather similar, but we’ll have to extend Rayleigh’s method via a
dual-series eigenfunction approach to solve the scattering of electromagnetic plane waves from a
half-cylindrical (circular) indentation in a ground plane. As Lord Rayleigh did, we will use to our
advantage the coincidence of the problem geometry and a constant coordinate surface in circular
coordinates. The main difference between this method and typical eigenfunction problems lies
in the incomplete orthogonality of the sinusoids over a half-space, and the use of two separate
regions of the problem because we will have to consider fields in the region r < a. We consider
two polarizations: incident transverse magnetic (TM) and incident transverse electric (TE). The
analysis for each is done similarly, but they are presented separately to try to make things easier to
follow.

We consider a TM plane wave which is polarized in the z-direction and makes an angle 𝜑inc

with the positive x-semi-axis. It is incident upon and scatters from a half-cylindrical indentation,
or channel, in the ground plane, as shown in Figure 7.18.

The channel is of radius r = a and of infinite extent in the z-direction. All angles are measured
positive in the counter-clockwise direction starting with𝜑 = 0 along the positive x-semiaxis. Angles
are in the range 0 < 𝜑 < 2𝜋. The channel is described by 𝜋 < 𝜑 < 2𝜋 and r = a. The surface 0 <
𝜑 < 𝜋 and r = a is referred to as the aperture. It is the region complementary to the channel. The
problem will be formulated so that the boundary conditions along the ground plane will be auto-
matically satisfied, and then three boundary conditions will be applied at the surface r = a: one
on the channel and two across the aperture. The region r < a is the interior region and is denoted

2
1

r = a

y

xφinc

Einc

φ

Figure 7.18 An incident TM plane wave at angle 𝜑inc to a semicircular channel of radius r = a in a
perfectly conducting ground plane.
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by the superscript 1. The region r > a and 0 < 𝜑 < 𝜋 is the exterior region and is denoted by the
superscript 2.

The incident field is a plane wave as described earlier. We write

Einc
z = eikr cos(𝜑−𝜑inc) (7.70)

where unit amplitude has been assumed and ei𝜔t time dependence suppressed. This plane wave
has the following well-known expansion in terms of cylindrical Bessel functions

Einc
z =

∞∑
n=−∞

inJn(kr)ein(𝜑−𝜑inc) (7.71)

In the exterior region, the scattered field will be considered to be made up of two parts. The first
is the reflected wave that would be present if there were no channel, and the second is the deviation
from that caused by diffraction at the channel. Thus, in the exterior region, we refer to the incident,
reflected, and diffracted waves. We are, of course, most interested in the diffracted wave.

The reflected wave is also a plane wave and is well known. We have 𝜑ref = 2𝜋 − 𝜑inc so that the
reflected wave can be written as:

Eref
z = −eikr cos(𝜑+𝜑inc) (7.72)

We now note that
(

Einc
z + Eref

z

)
𝜑=0,𝜋

= 0, which means that they together satisfy the appropriate
boundary conditions on the ground plane. Don’t take my word for that, though. For 𝜑 = 0, we have

Einc
z + Eref

z = eikr cos(−𝜑inc) − eikr cos(𝜑inc) = 0 (7.73)

since cos(−𝛼) = cos(𝛼). For 𝜑 = 𝜋, we have

Einc
z + Eref

z = eikr cos(𝜋−𝜑inc) − eikr cos(𝜋+𝜑inc) = 0 (7.74)

and since cos(a ± b) = cos a cos b ∓ sin a sin b we have cos(𝜋 ± 𝜑inc) = − cos𝜑inc and thus

Einc
z + Eref

z = e−ikr cos(𝜑inc) − e−ikr cos(𝜑inc) = 0 (7.75)

Writing the reflected field in terms of the cylindrical Bessel functions, we have

Eref
z = −

∞∑
n=−∞

inJn(kr)ein(𝜑+𝜑inc) (7.76)

Finally, for the diffracted exterior field, we write

Edif
z =

∞∑
n=0

AnH(2)
n (kr) sin n𝜑 (7.77)

where An is an unknown modal coefficient and we have expanded the outgoing wave in terms of
Hankel functions (of the second kind) and also sin(n𝜙). Noting that because sin 0 = sin(n𝜋) = 0, the
diffracted wave vanishes on the ground plane and so satisfies the appropriate boundary condition
there. If we write the total field in the exterior as:

E2
z = Einc

z + Eref
z + Edif

z (7.78)

we see that E2
z = 0 for 𝜑 = 0, 𝜋, that is, over the ground plane.

In the interior region, the total Ez-field can be written

E1
z =

∞∑
n=−∞

DnJn(kr)ein𝜑 (7.79)
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where Dn is an unknown modal coefficient. However, it will be more convenient for our analysis if
we write this as:

E1
z =

∞∑
n=−∞

Jn(kr)
[
Bn cos(n𝜑) + Cn sin(n𝜑)

]
(7.80)

where Bn, Cn are the modal coefficients that will be determined from the boundary conditions.
Sorry for introducing Dn and then immediately replacing it with Bn and Cn. Some authors write the
angular part in terms of ein𝜑 and some do it in terms of sin(n𝜑) and cos(n𝜑), which can sometimes
throw one a little. We’ve got three unknown modal coefficients and so we’re going to need three
boundary condition equations. First a little more trigonometry, though.

We now need to write the incident and reflected Ez-fields as series over n = 0 to ∞ rather than
over all n. We note that J−n(kr) = (−1)nJn(kr) and i−n = (−1)nin so that

Einc
z = −J0(kr) + 2

∞∑
n=0

inJn(kr) cos n(𝜑 − 𝜑inc) (7.81)

and similarly for the reflected wave

Eref
z = J0(kr) + 2

∞∑
n=0

inJn(kr) cos n(𝜑 + 𝜑inc) (7.82)

Hence

Einc
z + Eref

z = 2
∞∑

n=0
inJn(kr)

[
cos n(𝜑 − 𝜑inc) − cos n(𝜑 + 𝜑inc)

]
(7.83)

and if we again use the trigonometric identity cos(a ± b) = cos a cos b ∓ sin a sin b we find

Einc
z + Eref

z = 4
∞∑

n=0
inJn(kr) sin n𝜑 (7.84)

Recalling the expression for the diffracted field, we write the total exterior field

E2
z =

∞∑
n=0

(
4inJn(kr) sin n𝜑inc + AnH(2)

n (kr)
)

sin n𝜑 (7.85)

In this expression, An is the modal coefficient that we want to solve for.
The 𝜑-component of the magnetic field is also of interest in this problem. It is related to Ez by

H
𝜑
= −i
𝜔𝜇

𝜕rEz (7.86)

so that the exterior and interior H
𝜑

-fields are

H2
𝜑
= −ik
𝜔𝜇

∞∑
n=0

(
4inJ′n(kr) sin n𝜑inc + AnH

′(2)
n (kr)

)
sin n𝜑 (7.87)

H1
𝜑
= −ik
𝜔𝜇

∞∑
n=0

J′n(kr)
(

Bn cos n𝜑 + Cn sin n𝜑
)

(7.88)

where J′n(z) = 𝜕zJn(z) is differentiation with respect to the argument of the Bessel function.
The required boundary conditions for solving this TM problem are

E2
z = 0 for r = a and 𝜋 < 𝜑 < 2𝜋 (7.89)

E2
z = E1

z for r = a and 0 < 𝜑 < 𝜋 (7.90)
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H2
𝜑
= H1

𝜑
for r = a and 0 < 𝜑 < 𝜋 (7.91)

The first condition enforces zero tangential electric field on the surface of the perfectly reflect-
ing channel and the last two ensure continuous tangential electric and magnetic field across the
aperture, or (imaginary) surface that is complementary to the channel.

The boundary conditions give the following three equations:
∞∑

n=0
Jn(ka)Bn cos n𝜑 +

∞∑
n=0

Jn(ka)Cn sin n𝜑 = 0 (7.92)

∞∑
n=0

Jn(ka)Bn cos n𝜑 +
∞∑

n=0
Jn(ka)Cn sin n𝜑 =

∞∑
n=0

(
4inJn(ka) sin n𝜑inc + AnH(2)

n (ka)
)

sin n𝜑inc

(7.93)
∞∑

n=0
J′n(ka)Bn cos n𝜑 +

∞∑
n=0

J′n(ka)Cn sin n𝜑=
∞∑

n=0

(
4inJ′n(ka) sin n𝜑inc +AnH′(2)

n (ka)
)

sin n𝜑inc

(7.94)
where we must keep in mind that the first is valid for 𝜋 < 𝜑 < 2𝜋 and the second two are valid for
0 < 𝜑 < 𝜋.

So now I’m going to have to ask you to bear with me for a couple of pages. First, I’m going to
define some functions that merely serve the purpose of containing the functional variation on
things besides 𝜑 and then I’ll do some trigonometry that will allow us to write all three of these
boundary condition equations in the same form. Then we’ll be able to isolate the key behavior of
interest with regards to incomplete orthogonality. As I said, bear with me just a bit.

We define the following for convenience:

n = 4inJn(ka) sin n𝜑inc + AnH(2)
n (ka) − CnJn(ka)

𝒢n = BnJn(ka)
ℛn = −CnJn(ka)

as well as ′n = 𝜕

𝜕(ka)
n and so on. The boundary conditions are then

∞∑
n=0

𝒢n cos n𝜑 =
∞∑

n=0
ℛn sin n𝜑 (𝜋 < 𝜑 < 2𝜋)

∞∑
n=0

𝒢n cos n𝜑 =
∞∑

n=0
n sin n𝜑 (0 < 𝜑 < 𝜋)

∞∑
n=0

𝒢 ′
n cos n𝜑 =

∞∑
n=0

 ′
n sin n𝜑 (0 < 𝜑 < 𝜋)

In the first equation, we make the change of variables 𝜙 = 𝜑 − 𝜋 so that
∞∑

n=0
𝒢n cos n(𝜙 + 𝜋) =

∞∑
n=0

n sin n(𝜙 + 𝜋) (0 < 𝜙 < 𝜋)

Noting that cos n(𝜙 + 𝜋) = (−1)n cos n𝜙 and sin n(𝜙 + 𝜋) = (−1)n sin n𝜙, we have
∞∑

n=0
(−1)n𝒢n cos n𝜙 =

∞∑
n=0

(−1)nn sin n𝜙 (0 < 𝜙 < 𝜋)
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and assuming that you’re still bearing with me as I include so very many of the small steps, now
define 𝒢n = (−1)n𝒢n and such to write

∞∑
n=0

𝒢n cos n𝜙 =
∞∑

n=0
ℛ sin n𝜙 (0 < 𝜙 < 𝜋)

which is exactly the same form in the angle variable as the other two boundary condition equations.
Please do flip back a couple of pages and check that, since I went through the trouble of including
mathematical details so you wouldn’t even have to go look up simple trigonometric identities.

We now make use of the following orthogonality relations among sinusoids, which I’m typing
here so you don’t have to go look them up.

∫

𝜋

0
sin n𝜑 sin m𝜑d𝜑 = 𝜋

2
𝛿nm

∫

𝜋

0
sin n𝜑 cos m𝜑d𝜑 =

{
0 if n − m is even
2n

n2−m2 if n − m is odd

So now take our “generic” boundary condition equation, multiply it by sin m𝜑 and integrate from
0 to 𝜋.

∫

𝜋

0

∑
n = 0∞𝒢n cos n𝜙d𝜑 =

∫

∞

0

∞∑
n=0

ℛ sin n𝜙d𝜑

Exchanging the sums and integrals and using the orthogonality relation gives

2
∗∑
n

( m𝒢n

m2 − n2

)
= 𝜋

2
m (7.95)

where
∑∗

n is used to indicate a sum over n from zero to infinity where (n − m) is odd. Yes, I know
that’s strange. It won’t be difficult to program, though, so let’s just keep going. Ok, fine. Here’s this
strange even–odd summation written out explicitly

me
=

∞∑
n=1,3,5

m𝒢n

m2 − n2

mo
=

∞∑
n=0,2,4

m𝒢n

m2 − n2

Referring to our previous definitions of the variables we defined for convenience, the three
boundary conditions give us

4imJn(ka) sin m𝜑inc + AmH(2)
m (ka) − CmJm(ka) = 4m

𝜋

∗∑
n

BnJn(ka)
m2 − n2

4imJln(ka) sin m𝜑inc + AmH′(2)
m (ka) − CmJ′m(ka) = 4m

𝜋

∗∑
n

BnJ′n(ka)
m2 − n2

CmJm(ka) = 4m
𝜋

∗∑
n

BnJn(ka)
m2 − n2

where we’ve used the fact that n − m is odd in the last of these, which took care of a minus sign
for us. These three equations will be used to solve for the three modal coefficients An,Bn,Cn. Of
course, all we really want is An since that is the one for the diffracted field, but we can’t just solve
for it. Go ahead and stare at the three equations. I’ll wait.
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I don’t know what algebra you just tried to do, but what I did was to solve the first two equations
for An and then equated them. I then used the Wronskian relationship Δ

(
Jm(ka),H(2)

m (ka)
)
= −2i

𝜋ka
and substituted in for Cm to end up writing an expression that only contains Bn

∗∑
n

Bn

m2 − n2

{
Jn(ka) + i𝜋ka

2

(
Jn(ka)H′(2)

m (ka) − J′n(ka)H(2)
m (ka)

)
Jm(ka)

}
= 𝜋im

m
Jm(ka) sin m𝜑inc

(7.96)

I may have skipped some steps, but I’m fully confident you can fill in the missing ones. One more
bit of algebra and then we’re pretty much home free. Recall the two equations

4imJn(ka) sin m𝜑inc + AmH(2)
m (ka) − CmJm(ka) = 4m

𝜋

∗∑
n

BnJn(ka)
m2 − n2

CmJm(ka) = 4m
𝜋

∗∑
n

BnJn(ka)
m2 − n2

Plug the second in to the first and do just a tiny bit more algebra to write

Am = 1
H(2)

m (ka)

{
8m
𝜋

∗∑
n

BnJn(ka)
m2 − n2 − 4imJm(ka) sin m𝜑inc

}
(7.97)

Thus, once Bn is solved for from the seemingly simple equation above, we can use this expression
to solve for the modal coefficients, Am, that determine the diffracted fields in the exterior:

Edif
z =

∞∑
m=1

AmH(2)
m (kr) sin m𝜑 (7.98)

I said seemingly simple because we can’t just solve for Bn in the way we want to. Because the orthog-
onality was incomplete. I also said that the strange even–odd summation wouldn’t be difficult to
program. I found it pretty simple to do using FORTRAN77 back in the 1980s. That goes double
if you’re using something like Matlab that’s naturally suited to solve matrix equations, which is
what we’re dealing with. I still have a hardcopy of that F77 code and it’s only a couple dozen lines,
with the rest of it just a matrix inversion subroutine that somebody gave me. Yes, I’m so old that I
remember the days when you asked people you worked with if they had any good matrix inversion
routines.

I’m also so old that my instinct about what to do next was to consider the special case of a
small-diameter channel where the special functions could be replaced with their small-argument
approximations and with ka small you’d only need a few terms in the infinite summations. Don’t
judge. The VAX 11/750 mainframe I was using was only as fast as the 286 PC that I had on my desk.
That PC didn’t have a math coprocessor. The good news is that I’m just young enough that I never
had to use punch cards. My mother is in her mid-80s and she tells me about having to drive an
hour to use the computer to analyze the data for her dissertation. She ultimately paid someone to
key the punchcards for her so her program would actually run. Kids these days walk around with
semidisposable supercomputers in their pockets. . . .

When ka → 0, the cylinder functions have the simple forms

Jn(ka)→
(ka∕2)n

n!
H(2)

n (ka)→ i
n𝜋

n!
(ka∕2)n
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The three equations that we must solve also become much simpler, and we can separate the
ka-dependence from the necessary numerical matrix inversion. Performing that necessary matrix
inversion, we find a leading factor of −0.2 which appears to make good sense because the
well-established result for diffraction from a narrow slit gives −0.25 for that factor. Here are the
two answers together to reinforce that point

Edif
z ≈ 0.2

√
2𝜋(ka)2ei3𝜋∕4 e−ikr√

kr
sin𝜑 sin𝜑inc (channel) (7.99)

Edif
z ≈ 0.25

√
2𝜋(ka)2ei3𝜋∕4 e−ikr√

kr
sin𝜑 sin𝜑inc (slit) (7.100)

The transverse electric polarization for this problem is done in a very similar way, except that the
incident H-wave is polarized in the z-direction. In the small-argument limit, the answer that we’re
ultimately after turns out to be

Hdif
z ≈

√
𝜋

2
(ka)2ei3𝜋∕4 e−ikr√

kr
sin𝜑 sin𝜑inc (−1 + cos𝜑 cos𝜑inc) (7.101)

Here we have neglected 1
2
(ka)2 ln(ka) with respect to unity. In the TM case, we were able to

compare our result to those for TM wave scattering from a thin slit and we obtained excel-
lent agreement because of the following similarity in both cases: the electric field vector was
oriented along the channel/slit and the “open circuit” of the slit does not manifest itself. For
the TE polarization, however, the electric field vector is oriented normal to the discontinuity,
and here the currents excited will be greatly affected by the difference between the channel
and the slit. Simply put, the currents can travel up to, down into, out of, and away from the
channel. Certainly, there will be scattering from the slope changes of the surface, but that will
be less than that caused by the slit, where the currents are stopped completely by the “open
circuit.”

TE

TM

0

0.18

0.19

0.20

0.2 0.4 0.6
ka

0.8 1.0

Figure 7.19 Amplitude parameter ±Q∕𝜋(Ka2) plotted vs. Ka for TM and TE cases. Note that as Ka gets
smaller, both cases approach their small-argument approximations, shown by the horizontal lines.
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In [23], we plot the exact dual-series eigenfunction solutions for the TM and TE cases and show
that they reduce to the low-frequency asymptotic solutions for small channels.7 In Figure 7.19, I
plot just the amplitude parameters to show that they approach the low-frequency approximation
derived earlier.
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8

Scattering from Spheroids and Elliptic Cylinders

In for a penny, in for a pound. If you’ve made it this far, I’m hoping that you’ll be willing to go
just a bit farther. Maybe I should say further rather than farther because the equations are going to
get deep. Not deep, as in deeply meaningful, but deep as in you may feel a bit like you’re drown-
ing in the notation. As a way of tossing you a life preserver, be (re)assured that we’re going to be
following exactly the same solution procedure as before. We’ll start by doing separation of vari-
ables for the Helmholtz equation to get three ODEs instead of one PDE. Those ODEs will often
have names associated with them as will the special functions that are their solutions. We then
write plane waves in terms of these orthogonal functions, assume appropriate forms for scattered
and transmitted fields in terms of these new-to-us functions, and apply the boundary conditions at
the constant coordinate surface which corresponds to the scatterer. The rest is just algebra, and
in some cases that algebra is quite simple. In some cases, it’s not, of course. Getting numbers
out of the functions we’re just about to start getting comfortable with used to be virtually impos-
sible, but these days, this part is not particularly difficult. Most of the time. The mathematical
functions we get when dealing with the wave equation in spheroidal and elliptic cylinder coor-
dinates sometimes don’t have good manners, numerically speaking. But let’s not worry about that
just yet.

Please keep in mind that the perfect sort of problem is one that’s so difficult nobody else can solve
it, while simultaneously it’s so important that money is no object. Easy problems are no challenge,
and lots of people can be found to solve those cheaply. What we’re often looking for is some sort
of barrier to competition. That’s often mathematics. To paraphrase Einstein, most people hold a
secret grudge against arithmetic and vegetables. I added the part about vegetables, which all the
diets and weight loss plans agree are important to eat. Like vegetables, most people turn up their
noses at even simple math. It makes them uncomfortable. I’m not even talking trigonometry here.
I’m talking calculating the tip after a dinner out. I’m a little surprised that as a society we haven’t
all agreed to adjust servers’ wages so that an easy-to-guess-at 10% tip would become the norm. I
think some people tip 20% because they can’t do 15% in their heads. I always just let my wife pay
because she likes to travel and gets hotel points on her credit card, and remembers her time as
a cocktail waitress in college so probably tips better than me. It all comes out of the same joint
account anyway.

It’s quite a small fraction of the population that has gotten comfortable with the math we used
in the first four or five chapters of this book. Once we introduced special functions, we lost just
about everybody else. Some people come across Bessel functions briefly as undergrads or mas-
ter’s students, but generally speaking special functions are the sorts of things that only show up in
PhD-level work. Congratulations, you’re not just a one-percenter, mathematically speaking, you’re
a tenth-percenter. What I mean by that is it’s about a tenth of a percent of the cohort you went to

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.
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high school with who will have come across the math we’ve been doing. My high school was fairly
large, so my graduating class was about 500 kids. Hence, my math works out that I’m the only one
who half knows about special functions.

But if the only special functions you know are the ones you get in spherical and cylindrical coor-
dinates, ya’ basic. What we’re about to do is rare. I was going to say esoteric, but that’s kind of
a big word, so let me just again make the point that only a handful of people on the planet are
comfortable with the special functions we’ll get when we do separation of variables in spheroidal
and elliptic cylindrical coordinates. That creates a natural barrier to competition for you. The inex-
orable march of time means that most of the people who know how to use this mathematics are
retired or otherwise aging out of the system. I’m always a little afraid to google people who were
big names back in the day1 because obituaries are often the top search results. (You may or may not
have noticed that a large percentage of the old-timers I’ve mentioned in footnotes seemed to have
died during the COVID-19 pandemic.) My point is merely that it’s going to be worth getting com-
fortable with the math below because when you need it, you need it and if you find an important
application that needs it, you aren’t going to have much competition. You may have to be careful
about writing these equations while on an airplane because your seatmates might push the call
button and get you put on the terror watch list.2

8.1 Scalar Wave Equation in Elliptic Cylinder Coordinates

I think I’ve been a little too dismissive of Wikipedia. It’s not that I fondly remember the days of
looking things up in an outdated set of encyclopedias when I needed to do a book report for social
studies. It’s that I expect treatments of highly technical topics to be superficial. Somehow I feel bet-
ter when I have on hand a definitive monograph on a highly specialized subject of study. Something
that a mathematician or scientist spent a career learning about, and then eventually got around
to typing up and publishing so you would have the esoteric bits you need to solve your problem
at hand. I may have just looked up Mathieu functions on Wikipedia and the harshest criticism I
could levy is that I prefer different symbols for the elliptic cylinder coordinates. I prefer to write the
relations between the Cartesian (x, y, z) and elliptic cylinder (𝜉, 𝜂, z) coordinates as:

x = q cosh 𝜉 cos 𝜂
y = q sinh 𝜉 sin 𝜂 (8.1)
z = z

which are illustrated in Figure 8.1. Ok, so here we go. Buckle up.

1 I googled Cavour W. Yeh because I was reading his 1963 paper on scattering from a penetrable ribbon and found
that he got “what federal prosecutors said was the stiffest punishment ever for research grant fraud nationwide,”
namely two years in prison plus US$ 1.75 million in fines and restitution. Yeh, a UCLA professor since 1967, also
resigned his tenured post. He apparently put two of his sisters and a brother on the UCLA payroll, paid by research
grants, and they each got three years in prison because they kicked back some of the salary to their brother, which is
stupid. The judge who sentenced him, repeatedly referred to him as a genius who produced good scientific results
on the grants. Yeh said that he only hired his family members because nobody else could do the research properly.
As if facility with elliptic cylinder wave functions is somehow genetic. After Yeh got out of prison his wife divorced
him and a few years later, his son died in a camping accident.
2 https://www.theguardian.com/us-news/2016/may/07/professor-flight-delay-terrorism-equation-american-
airlines.

https://www.theguardian.com/us-news/2016/may/07/professor-flight-delay-terrorism-equation-american-airlines
https://www.theguardian.com/us-news/2016/may/07/professor-flight-delay-terrorism-equation-american-airlines
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Figure 8.1 Elliptical coordinates (𝜉, 𝜂) with the radial lines (ellipses) shown from 0 to 1.1 and the angular
coordinate lines (parabolas) shown from 0.0 to 2𝜋. Note that the distance between the two foci is 2q.

The scalar wave equation can be written as:

∇2
𝜙 − 1

c2 𝜕
2
t 𝜙 = 0 (8.2)

or, taking the Fourier transform in time with kernel ei𝜔t and writing k = 𝜔∕c(
∇2 + k2)

𝜙 = 0 (8.3)

where 𝜙 is a scalar function, k is the wave number and in Cartesian coordinates the Laplacian
operator is ∇2 = 𝜕

2
x + 𝜕2

y + 𝜕2
z . Of course, we’re dealing with elliptic cylinder coordinates, so we

must transform the Laplacian operator from Cartesian to confocal coordinates. The two systems
are related by

x + iy = q cosh(𝜉 + i𝜂) z = z

Now, since cosh(a + b) = cosh a cosh b + sinh a sinh b and also cosh ix = cos x and sinh ix = i sin x
we write

x + iy = q cosh 𝜉 cosh i𝜂 + q sinh 𝜉 sinh i𝜂
= q cosh 𝜉 cos 𝜂 + iq sinh 𝜉 sin 𝜂

so that we have the relations between Cartesian (x, y, z) and elliptic cylinder (𝜉, 𝜂, z) given above.
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If we write𝑤 = x + iy and 𝜁 = 𝜉 + i𝜂 we have:𝑤 = x − iy; 𝜁 = 𝜉 − i𝜂;𝑤𝑤 = x2 + y2; 𝜁𝜁 = 𝜉
2 + 𝜂2

as well as 𝑤 = q cosh 𝜁 and 𝑤 = q cosh 𝜁 . Also note

𝑤𝑤 = x2 + y2 = q2 {cosh(𝜉 + i𝜂) cosh(𝜉 − i𝜂)}
= q2 {cosh 𝜉 cos 𝜂 + i sinh 𝜉 sin 𝜂} {cosh 𝜉 cos 𝜂 − i sinh 𝜉 sin 𝜂}
= q2 {[cosh2

𝜉 cos2
𝜂 − sinh2

𝜉 sin2
𝜂

]
+ i [sinh 𝜉 cosh 𝜉 sin 𝜂 cos 𝜂

− cosh 𝜉 cos 𝜂 sinh 𝜉 sin 𝜂]}

Hence

𝑤𝑤 = q2 {cosh2
𝜉 cos2

𝜂 − sinh2
𝜉 sin2

𝜂

}
(8.4)

Furthermore

r 𝜕
2
𝑤𝑤

𝜕𝑤𝜕𝑤

=
(
𝜕

2
x + 𝜕2

y
)

zz

r 𝜕
2
𝜁𝜁

𝜕𝜁𝜕𝜁

=
(
𝜕

2
𝜉
+ 𝜕2

𝜂

)
𝜁𝜁

since 𝜕2
x (x2 + y2) = 2, 𝜕2

y (x2 + y2) = 2 and

𝜕
2

𝜕𝑤𝜕x
(𝑤x) = 𝜕

𝑤
(𝑤𝜕

𝑤
𝑤) = 𝜕

𝑤
(𝑤) = 1

with similar relations for 𝜁𝜁 . We can, of course, write

𝜕
𝜁
𝑤 = q sinh 𝜁 𝜕

𝜁
𝑤 = q sinh 𝜁

so that

𝜕
𝑤
𝜁 = 1

q sinh 𝜁
𝜕
𝑤
𝜁 = 1

q sinh 𝜁
and by the chain rule

𝜕
𝑤
= 1

q sinh 𝜁
𝜕
𝜁

𝜕
𝑤
= 1

h sinh 𝜁
𝜕
𝜁

Hence

𝜕
𝑤
𝜕
𝑤
= 1

q2 sinh 𝜁 sinh 𝜁
𝜕
𝜁
𝜕𝜁

and substituting, we get

𝜕
2
x + 𝜕2

y = 1
q2 sinh 𝜁 sinh 𝜁

𝜕
𝜁
𝜕
𝜁

(8.5)

which allows us to write

𝜕
2
x + 𝜕2

y = 1
q2 sinh 𝜁 sinh 𝜁

(
𝜕

2
𝜉
+ 𝜕2

𝜂

)
or, rearranging and adding back in the z-variation(

𝜕
2
𝜉
+ 𝜕2

𝜂
+ 𝜕2

z

)
𝜙 + k2h2 sinh 𝜁 sinh 𝜁𝜙 = 0 (8.6)

A half of a page or so of trig allows us to write

sinh 𝜁 sinh 𝜁 = 1
2
[cosh(2𝜉) − cos(2𝜂)]
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so that the scalar wave equation in elliptic cylinder coordinates becomes, with 𝜅 = 2kh(
𝜕

2
𝜉
+ 𝜕2

𝜂
+ 𝜕2

z

)
𝜙 + 2𝜅2 [cosh 2𝜉 − cos 2𝜂]𝜙 = 0 (8.7)

which is the desired result. Whew!

8.1.1 Separation of Variables

If it’s OK with you, I’m going to do the separation of variables in 2D. We all know that the z-variation
is going to give us sinusoids, so let’s put a pin in that part for now and do the hard part. The approach
is going to be familiar, but the special functions will not be familiar at all. They have names though:
Mathieu functions. Ready?

Consider the two-dimensional wave equation in elliptic coordinates(
𝜕

2
𝜉
+ 𝜕2

𝜂

)
𝜙 + 2k2 [cosh 2𝜉 − cos 2𝜂]𝜙 = 0 (8.8)

To solve this, we assume a solution of the form 𝜙(𝜉, 𝜂) = F(𝜉)G(𝜂), where F is a function of 𝜉 alone
and G is a function of 𝜂 alone. Substituting, we get

GF′′ + F ̈G + 2k2 [cosh 2𝜉 − cos 2𝜂]FG = 0

or
F′′

F
+
̈G
G

+ 2k2 [cosh 2𝜉 − cos 2𝜂]

Grouping together the terms dependent on 𝜉 and also grouping terms dependent on 𝜂 we write

F′′

F
+ 2k2 cosh 2𝜉 = −

̈G
G

+ 2k2 cos 2𝜂

Since the LHS is independent of 𝜂 and the RHS is independent of 𝜉, each side must be a constant,
say a. Accordingly, we obtain the two ordinary differential equations

F′′ + (a − 2k2 cosh 2𝜉)F = 0

̈G − (a − 2k2 cos 2𝜂)G = 0

where a is separation constant. Note that if we write 𝜂 = ±i𝜉 in the second equation it is equiva-
lent to the first. Similarly, if we write 𝜉 = ±i𝜂 in the first it is equivalent to the second. These two
equations are connected with the name of Mathieu.3 You’ll be unsurprised to know that the solu-
tions to Mathieu’s equations are Mathieu functions. According to Wikipedia, these are not to be
confused with Massieu functions. Apparently, it is perfectly OK to confuse Massieu function with

3 If it were asked what tyranny in this world has the least foundation in reason and is at the same time most
overbearing and capricious, none could be found to answer better to this description than fashion; that fashion
which makes us admire to-day what but yesterday would have excited astonishment, and which may provoke
ridicule to-morrow. We all know that this sovereign whose iron rule is so much more keenly felt on account of its
injustice governs the thousand and one details of every-day life; that it is supreme in literature and in the arts. But
those who have not watched closely the life of the scientific world may perhaps be surprised to hear that even there
if you would please you must bend the knee to fashion. What? might exclaim the stranger to the world of science,
can it be true that the mathematician knows other laws than the inflexible rules of logic? Does he care to obey other
orders than the invariable commands of reason? – Well, yes. Of course, to have a mathematical production accepted
as correct, it is sufficient that it conforms to the precepts of logic, but to have it admired as beautiful, as interesting,
as of importance, to gain honor and success by it, more is required: it must then satisfy the manifold and varying
exactions imposed by the prevailing taste of the day, by the preferences of prominent men, by the preoccupations of
the public (from Duhem [1]).
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Gibbs function or even to sometimes share credit by using the term Massieu–Gibbs functions.4 I
had never heard of Massieu before, but I thought it would be amusing to cite a footnote in a foot-
note. It’s important to stop and laugh just a bit along the way through a complicated derivation.
Back to work.

A solution for the wave equation thus comprises the product of any two functions, which are
solutions of the two aforementioned equations, respectively, for the same values of a and q = k2.
We consider solutions given by ordinary and modified Mathieu functions.

The functions cen(𝜂) and sen(𝜂) are cosine-elliptic (even) and sine-elliptic (odd) Mathieu func-
tions. The functions Cen(𝜉) and Sen(𝜉) are cosine-elliptic and sine-elliptic modified Mathieu func-
tions. The general solution of the wave equation can thus be written as:

𝜙 =
∞∑

n=0

{
AnCen(𝜉)cen(𝜂) + BnSen(𝜉)sen(𝜂)

}
(8.9)

where An and Bn are modal coefficients. It’s not obvious at this point, but it will be convenient to
write this in general form as:

𝜙 =
∞∑

n=0

{
A2nCe2n(𝜉)ce2n(𝜂) + B2n+2Se2n+2(𝜉)se2n+2(𝜂) (8.10)

+ A2n+1Ce2n+1(𝜉)ce2n+1(𝜂) + B2n+1Se2n+1(𝜉)se2n+1(𝜂)
}

where A2n, A2n+1, B2n+1 and B2n+2 are modal coefficients.

8.2 Scattering from a Perfectly-Conducting Elliptic Cylinder

There’s a lot more we could say about Mathieu functions, and I started typing out a bunch of it,
but I think that it would be best to simply proceed with the solution to a few scattering problems in
elliptic cylinder coordinates. I’m going to pay some homage to Cavour W. Yeh because he did some
really nice work just before I was born and I don’t want his later fall from grace to erase that. Also,
he follows the notation of McLachlan, who followed the notation of Inge and McLachlan’s book is
available as a downloadable PDF, which you probably should get a copy of if you’re going to deal
with Mathieu functions. You can buy a paperback version on Amazon if you prefer. I’m hoping I’ll
come across a hardcopy in a used bookstore someday.

The simplest problem we can start with turns out to be pretty simple, at least on paper. Consider
an incident plane transverse-magnetic wave incident at an angle 𝜃 on a perfectly conducting elliptic
cylinder whose surface corresponds to the ellipse 𝜉 = 𝜉0. McLachlan helpfully tells us to write

Einc
z = E0ex cos 𝜃+y sin 𝜃

= E0eik0q(cosh 𝜉 cos 𝜂 cos 𝜃+sinh 𝜉 sin 𝜂 sin 𝜃)

= 2E0

∞∑
n=0

[
1

p2n
Ce2n(𝜉)ce2n(𝜂)ce2n(𝜃) +

1
s2n+2

Se2n+2(𝜉)se2n+2(𝜂)se2n+2(𝜃)

+ i
p2n+1

Ce2n+1(𝜉)ce2n+1(𝜂)ce2n+1(𝜃) +
i

s2n+1
Se2n+1(𝜉)se2n+1(𝜂)se2n+1(𝜃)

]
(8.11)

4 Massieu, as discussed in the first footnote to the abstract of Gibbs’ Equilibrium, “appears to have been the first to
solve the problem of representing all the properties of a body of invariable composition which are concerned in
reversible processes by means of a single function.”
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As usual, the scattered field is a linear combination of the appropriate elliptical functions, and
as before, we have to choose the particular functions that will satisfy the Sommerfeld radiation
condition at 𝜉 → ∞ because the scattered field spreads out more and more as it gets farther and
farther from the scatterer. Recall that for the spheres and circular cylinders, that meant that we
had to choose an appropriate Hankel function for the radial part of the solution. That’s what the
functions Me(1)(𝜉) and Ne(1)(𝜉) are in the following expression for the z-component of the scattered
electric field:

Escat
z = 2E0

∞∑
n=0

[A2n

p2n
Me(1)2n (𝜉)ce2n(𝜂)ce2n(𝜃) +

B2n+2

s2n+2
Ne(1)2n+2(𝜉)se2n+2(𝜂)se2n+2(𝜃)

+
iA2n+1

p2n+1
Me(1)2n+1(𝜉)ce2n+1(𝜂)ce2n+1(𝜃) +

iB2n+1

s2n+1
Ne(1)2n+1(𝜉)se2n+1(𝜂)se2n+1(𝜃)

]
(8.12)

In these, A’s and B’s represent the modal coefficients that we want to solve for by application of
the boundary condition that Einc

z + Escat
z = 0 for 𝜉 = 𝜉0 and all values of 𝜂 from 0 to 2𝜋. The algebra

turns out to be quite simple because the Mathieu functions are orthogonal. What that means is that
we multiply the boundary condition equation by cem(𝜂) or sem(𝜂) and integrate over 𝜂 from 0 to 2𝜋.
The only terms in the summation over n that survive will be when n = m. Hence we have

A2m =
Ce2m(𝜉0)

Me(1)2m(𝜉0)
(8.13)

and similarly for the other modal coefficients.
It’s then straightforward, albeit nontrivial, to go back and compute Escat

z . One of the things that
makes this tricky is the numerics of implementing the Mathieu functions. When I first looked at
this class of problems in the late 1980s, I came up empty asking around if anybody I knew had any
F77 Mathieu functions subroutines they could share. Even today, it can be tricky. Two years ago,
we noticed errors in the PyHub routines for some of the functions, which nobody had cared about
for at least six years before that. My point is merely that I think we should pause here a moment
and look at the behavior of the special functions we’re about to use to make plots of TM scattering
from a PEC elliptic cylinder.

A very mature thing for you to do right about now would be to reproduce McLachlan’s plots of the
Mathieu functions from that book you downloaded a few pages ago. It’s the simplest way to make
sure that you’re using these new-to-you functions properly. The notation can be quite confusing,
so it would be easy to mix up some of them or some such thing.

Exercise 8.1 Reproduce McLachlan’s plots of the Mathieu functions. I shouldn’t have had to tell
you twice.

In 1964, Twersky5 solved the Mathieu function series solution for the scattering of a plane wave
by a perfectly conducting elliptic cylinder [2]. They obtained closed-form approximations for the

5 Victor Twersky was one of the world’s leading authorities on the scattering of radiation of all kinds, from light,
radar, and sonar to seismic waves in the Earth. His work is used to analyze the clutter produced by the scattering of
radar waves from chaff, to describe the effect of dust on the propagation of light in the atmosphere, to analyze the
scattering of light by the red cells in the blood and by biological tissue, etc. Twersky earned a BS from City College of
New York in 1943, an MA from Columbia University in 1948, and a PhD from New York University in 1950, all in
physics. From 1950 to 1966, he was an Engineering Specialist and Senior Scientist in the Electronic Defense
Laboratories of Sylvania-GTE in Mountain View, California and was also a Visiting Lecturer at Stanford during part
of that time. Twersky joined the faculty of the U. Illinois Chicago Department of Mathematics, Statistics, and
Computer Science in 1966 as a full professor and retired 1990.
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Figure 8.2 Polar plots of normalized bistatic scattering cross section for a PEC elliptic cylinder, sketched
from [3]. Arrows indicate direction of incident beam. (a) is for Einc parallel to the cylinder axis. (b) is for Hinc

parallel to the cylinder axis. The different curves are for various values of c𝜉1. The elliptic cylinder has an
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scattering coefficients of the elliptic modes and for the far-field scattering amplitudes. The corre-
sponding series for the scattered intensity and total scattering cross section are given for E parallel
to a generator and for E perpendicular. Analogous results are also obtained for the semielliptic pro-
tuberance on a ground plane. For this case, the series for the intensities and cross sections for both
polarizations. Numerical results obtained from series approximations, from closed forms, and from
tables of functions, are given.

We can have good confidence in this result because [3] cite this paper when they include plots
for bistatic scattering cross sections for an elliptic cylinder, which are sketched in Figure 8.2.

You should be able to reproduce these plots from [2] easily enough, but please have some respect
for people who went through agony to make plots back when I was a small six-week-early premie
and computers were room-sized behemoths. I assume that in late 1963 you’d have to code up your
own Mathieu function subroutines, kind of like how Dr. Frost said to my mother, “You might as
well take him home. You can do as much for him there as we can here in the hospital. Be sure to
wake him up and feed him every two hours.”

We can go back to the prehistory of computations when computer was a job description. The
Mathieu function agony is minimized if we consider the PEC elliptic cylinder to tend to the limit
of a flat ribbon. In the 1940s, McLachlan would have had to do the computations for Figures
8.3 and 8.4 by hand, unless he had computers working for him and they did the computations
by hand. I looked carefully just now in McLachlan’s book, and didn’t see any acknowledgments
to computers who made the figures. Although there were electronic computers in those days,
they were entirely taken up by the war effort, that is, doing ballistics-trajectory calculations and
code-breaking.
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Figure 8.3 Polar plots of EM scattering from a long PEC ribbon of width h. Arrows indicate direction of
incident beam.
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Figure 8.4 Polar plots of sound scattering from a long rigid ribbon of width h. Arrows indicate direction of
incident beam.
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8.3 Scattering from a Dielectric Elliptic Cylinder

The next obvious step is to make the elliptic scatterer penetrable, that is, a dielectric, so that we’ll
need to account for incident, scattered, and transmitted waves according to our usual procedure.
The dielectric will have a different permeability and permittivity than the region surrounding the
scatterer, and our boundary conditions will be continuity of tangential electric and magnetic fields
at 𝜉 = 𝜉0. Let’s start as before with the TM case, so that the incident and scattered fields are written
as:

Einc
z = E0ex cos 𝜃+y sin 𝜃

= E0eik0q(cosh 𝜉 cos 𝜂 cos 𝜃+sinh 𝜉 sin 𝜂 sin 𝜃)

= 2E0

∞∑
n=0

[
1

p2n
Ce2n(𝜉)ce2n(𝜂)ce2n(𝜃) +

1
s2n+2

Se2n+2(𝜉)se2n+2(𝜂)se2n+2(𝜃)

+ i
p2n+1

Ce2n+1(𝜉)ce2n+1(𝜂)ce2n+1(𝜃) +
i

s2n+1
Se2n+1(𝜉)se2n+1(𝜂)se2n+1(𝜃)

]
(8.14)

and

Escat
z = 2E0

∞∑
n=0

[A2n

p2n
Me(1)2n (𝜉)ce2n(𝜂)ce2n(𝜃) +

B2n+2

s2n+2
Ne(1)2n+2(𝜉)se2n+2(𝜂)se2n+2(𝜃)

+
iA2n+1

p2n+1
Me(1)2n+1(𝜉)ce2n+1(𝜂)ce2n+1(𝜃) +

iB2n+1

s2n+1
Ne(1)2n+1(𝜉)se2n+1(𝜂)se2n+1(𝜃)

]
(8.15)

When we assume a functional form for the transmitted fields, we’ll need to make sure the radial
functions are finite at 𝜉 = 0 as usual, so we write

Etrans
z = 2E0

∞∑
n=0

[C2n

p2n
Ce∗2n(𝜉)ce∗2n(𝜂)ce2n(𝜃) +

D2n+2

s2n+2
Se∗2n+2(𝜉)se∗2n+2(𝜂)se2n+2(𝜃)

+
iC2n+1

p2n+1
Ce∗2n+1(𝜉)ce∗2n+1(𝜂)ce2n+1(𝜃) +

iD2n+1

s2n+1
Se∗2n+1(𝜉)se∗2n+1(𝜂)se2n+1(𝜃)

]
(8.16)

where C and D are two more modal coefficients, and I’ve rather begrudgingly followed Yeh’s
notation using an asterisk to indicate where the Mathieu functions include a dependence on the
material properties of the scatterer. We obviously elided this issue when we were considering
just the PEC scatterer. Here we’ll have both k = 𝜔

√
𝜇0𝜖0 for free space and k1 = 𝜔

√
𝜇1𝜖1 for the

dielectric scatterer. One of our boundary condition equations will be that Einc
z + Escat

z = Etrans
z for

𝜉 = 𝜉0 and all values of 𝜂 from 0 to 2𝜋.
The tangential magnetic field is also continuous at the boundary, so we need to write Hinc

𝜂
+

Hscat
𝜂

= Htrans
𝜂

for 𝜉 = 𝜉0 and all values of 𝜂 from 0 to 2𝜋. Since Maxwell’s equations in elliptic cylin-
der coordinates gives us

H
𝜂
= −i𝜔𝜖

k2q
√

sinh2
𝜉 + sin2

𝜂

𝜕
𝜉
Ez

we can write

Hinc
𝜂

= 2E0
−i𝜔𝜖0

k2q
√

sinh2
𝜉 + sin2

𝜂

∞∑
n=0

[
1

p2n
Ce′2n(𝜉)ce2n(𝜂)ce2n(𝜃)

+ 1
s2n+2

Se2n+2(𝜉)se′2n+2(𝜂)se2n+2(𝜃) +
i

p2n+1
Ce2n+1(𝜉)ce′2n+1(𝜂)ce2n+1(𝜃)

+ i
s2n+1

Se2n+1(𝜉)se′2n+1(𝜂)se2n+1(𝜃)
]

(8.17)
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and

Hscat
𝜂

= 2E0
−i𝜔𝜖0

k2q
√

sinh2
𝜉 + sin2

𝜂

∞∑
n=0

[A2n

p2n
Me

′(1)
2n (𝜉)ce2n(𝜂)ce2n(𝜃)

+
B2n+2

s2n+2
Ne

′(1)
2n+2(𝜉)se2n+2(𝜂)se2n+2(𝜃) +

iA2n+1

p2n+1
Me

′(1)
2n+1(𝜉)ce2n+1(𝜂)ce2n+1(𝜃)

+
iB2n+1

s2n+1
Ne

′(1)
2n+1(𝜉)se2n+1(𝜂)se2n+1(𝜃)

]
(8.18)

and also

Htrans
𝜂

= 2E0
−i𝜔𝜖1

k2
1q
√

sinh2
𝜉 + sin2

𝜂

∞∑
n=0

[C2n

p2n
Ce∗2n(𝜉)ce∗2n(𝜂)ce2n(𝜃)

+
D2n+2

s2n+2
Se∗′2n+2(𝜉)se∗2n+2(𝜂)se2n+2(𝜃) +

iC2n+1

p2n+1
Ce∗′2n+1(𝜉)ce∗2n+1(𝜂)ce2n+1(𝜃)

+
iD2n+1

s2n+1
Se∗′2n+1(𝜉)se∗2n+1(𝜂)se2n+1(𝜃)

]
(8.19)

where prime indicates differentiation with respect to 𝜉.
At this point, it looks like we can simply proceed as before, using orthogonality to get rid of the

pesky summation from 0 to ∞ and then canceling common terms and doing a bit of algebra. It’s
just two equations, after all. Not so fast there, skippy. This issue we’re about to face is somewhat
obscured by the notation we’re using. Don’t be too hard on Prof. Yeh, though. He published his
1963 paper [4] in a journal with a two-column format, so he had to use a notation that could fit on
those pages. Recall that we’re using an asterisk to indicate where the Mathieu functions include a
dependence on the material properties of the scatterer. What that means is when we multiply the
boundary condition equations by cem(𝜂) or sem(𝜂) and integrate over 𝜂 from 0 to 2𝜋 it won’t nec-
essarily be the case that the only terms in the summation over n that survive will be when n = m.
Put another way, cem(𝜂) and sem(𝜂) aren’t orthogonal with ce∗m(𝜂) and se∗m(𝜂), respectively. Feel free
to curse under your breath about that. Then remind yourself about the whole barrier to compe-
tition and get ready with your PDF or paperback copy of McLachlan because the mathematical
gymnastics are going to be in there.

8.3.1 Important Tea About Orthogonality

As I may have mentioned, I learned differential equations in a movie theater. It wasn’t some sort
of on-line course because this was the early 1980s. My urban university had worked a deal where
a small multiplex was used for classes during the day and showed art films at night. I saw many
movies there, and noticed that at night the chalkboards were covered by curtains. During the day I
noticed that the movie screens were covered by curtains and the snack bar was closed. I also noticed
that there were two basic solutions to ODEs. The first was to guess an exponential solution and see
if that worked. The second was to try a series solution. Special functions like those attributed to
Mathieu started out as series solutions but eventually got their own symbols. So, without further
ado, here they are from page 21 in McClachlan.

ce2n(𝜂, k) =
∞∑

r=0
A(2n)

2r cos 2r𝜂 (8.20)

ce2n+1(𝜂, k) =
∞∑

r=0
A(2n+1)

2r+1 cos(2r + 1)𝜂 (8.21)
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se2n+1(𝜂, k) =
∞∑

r=0
B(2n+1)

2r+1 sin(2r + 1)𝜂 (8.22)

se2n+2(𝜂, k) =
∞∑

r=0
B(2n+2)

2r+2 sin(2r + 2)𝜂 (8.23)

In these series, the A’s and B’s are functions of wave number k and hence material. Note especially
that the sinusoids aren’t! This will allow us to now write

∫

2𝜋

0
ce2n(𝜂, k0)ce2m(𝜂, k1)d𝜂 =

∞∑
r=0

A(2n)
2r

∞∑
r′=0

A∗(2m)
2r′ ∫

2𝜋

0
cos 2r𝜂 cos 2r′𝜂d𝜂

= 2𝜋A(2n)
0 A∗(2m)

0 + 𝜋
∞∑

r=1
A(2n)

2r

∞∑
r′=1

A∗(2m)
2r′ 𝛿rr′

= 2𝜋A(2n)
0 A∗(2m)

0 + 𝜋
∞∑

r=1
A(2n)

2r A∗(2m)
2r (8.24)

where we’ve separated out the r = 0 term in the summation because cos 0 = 1. But what are the
A’s you might ask? You might even wonder about the B’s it looks like we’re going to need it in
just a minute. Chapter 3 in McClachlan [5] has the title “Calculation of Characteristic Coefficients
and Numbers” which is kind of an ominous sign for us, especially given that there are a bunch of
figures illustrating the variation in certain parameters in stable and unstable regions. I vote we try
not to panic just yet and continue on to get down on paper an answer to the problem at hand. Keep
tight to the knowledge that Prof. Yeh made plots with computers from these equations in the early
1960s, so it shouldn’t be too tough these days. I do feel the need to mention that one of Prof. Yeh’s
students seemed to have found a typo in his code 25 years later and they together published a few
corrected plots in an erratum to the early paper [4]. But let’s keep going for now.

∫

2𝜋

0
ce2n+1(𝜂, k0)ce2m+1(𝜂, k1)d𝜂 =

∞∑
r=0

A(2n+1)
2r+1

∞∑
r′=0

A∗(2m+1)
2r′+1 ∫

2𝜋

0
cos(2r + 1)𝜂 cos(2r′ + 1)𝜂d𝜂

= 𝜋
∞∑

r=0
A(2n+1)

2r+1

∞∑
r′=0

A∗(2m+1)
2r′+1 𝛿rr′

= 𝜋
∞∑

r=0
A(2n+1)

2r+1 A∗(2m+1)
2r+1 (8.25)

∫

2𝜋

0
se2n+1(𝜂, k0)se2m+1(𝜂, k1)d𝜂 =

∞∑
r=0

B(2n+1)
2r+1

∞∑
r′=0

B∗(2m+1)
2r′+1 ∫

2𝜋

0
sin(2r + 1)𝜂 sin(2r′ + 1)𝜂d𝜂

= 𝜋
∞∑

r=0
B(2n+1)

2r+1

∞∑
r′=0

A∗(2m+1)
2r′+1 𝛿rr′

= 𝜋
∞∑

r=0
B(2n+1)

2r+1 B∗(2m+1)
2r+1 (8.26)

∫

2𝜋

0
se2n+2(𝜂, k0)se2m+2(𝜂, k1)d𝜂 =

∞∑
r=0

B(2n+2)
2r+2

∞∑
r′=0

B∗(2m+2)
2r′+2 ∫

2𝜋

0
sin(2r + 2)𝜂 sin(2r′ + 2)𝜂d𝜂

= 𝜋
∞∑

r=0
B(2n+2)

2r+2

∞∑
r′=0

B∗(2m+2)
2r′+2 𝛿rr′

= 𝜋
∞∑

r=0
B(2n+2)

2r+2 B∗(2m+2)
2r+2 (8.27)
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We’ll also need these, which are derived similarly

∫

2𝜋

0
ce2

2n(𝜂, k)d𝜂 = 2𝜋
(

A(2m)
0

)2
+ 𝜋

∞∑
r=1

(
A(2n)

2r

)2
(8.28)

∫

2𝜋

0
ce2

2n+1(𝜂, k)d𝜂 = 𝜋

∞∑
r=0

(
A(2n+1)

2r+1

)2
(8.29)

∫

2𝜋

0
se2

2n+1(𝜂, k)d𝜂 = 𝜋

∞∑
r=0

(
B(2n+1)

2r+1

)2
(8.30)

∫

2𝜋

0
se2

2n+2(𝜂, k)d𝜂 = 𝜋

∞∑
r=0

(
B(2n+2)

2r+2

)2
(8.31)

OK, so here we go. We first multiply the boundary condition equation for continuity of tangential
electric field by ce2m(𝜂) and integrate over 𝜂

∫

2𝜋

0
ce2m(𝜂)

(
Einc

z + Escat
z = Etrans

z
)
𝜉=𝜉0

d𝜂 (8.32)

which gives

Ce2m(𝜉0)
p2m

ce2m(𝜃)

[
2
(

A(2m))2 +
∞∑

r=1

(
A(2m)

2r

)2
]
+ A2m

Me2m(𝜉0)
p2m

ce2m(𝜃)

[
2
(

A(2m))2 +
∞∑

r=1

(
A(2m)

2r

)2
]

=
∞∑

n=0
C2n

Ce∗2m(𝜉0)
p2m

ce2m(𝜃)

[
2A(2n)

0 A(2m)
0 +

∞∑
r=1

A(2n)
2r A∗(2m)

2r

]
(8.33)

This can be rewritten as:

Ce2m(𝜉0) + A2mMe2m(𝜉0) =
∞∑

n=0
C2nCe∗2n(𝜉0)

p2m

p2n

ce2n(𝜃)
ce2m(𝜃)

×

⎡⎢⎢⎢⎢⎣
2A(2n)

0 A∗(2m)
0 +

∞∑
r=1

A(2n)
2r A∗(2m)

2r

2
(

A(2m)
0

)2
+

∞∑
r=1

(
A(2m)

2r

)2

⎤⎥⎥⎥⎥⎦
(8.34)

The corresponding boundary condition equation for continuity of tangential electric field becomes

Ce′2m(𝜉0) + A2mMe′2m(𝜉0) =
𝜇0

𝜇1

∞∑
n=0

C2nCe∗′2n(𝜉0)
p2m

p2n

ce2n(𝜃)
ce2m(𝜃)

⎡⎢⎢⎢⎢⎣
2A(2n)

0 A∗(2m)
0 +

∞∑
r=1

A(2n)
2r A∗(2m)

2r

2
(

A(2m)
0

)2
+

∞∑
r=1

(
A(2m)

2r

)2

⎤⎥⎥⎥⎥⎦
(8.35)

Don’t worry. We don’t have to sum to infinity, so we’re going to be able to write this as a matrix
equation that can be inverted to solve for C2n. First, though, we can divide by Me2m(𝜉0) and
Me′2m(𝜉0), respectively, in these two equations and subtract the second from the first to eliminate
A2m and get an equation that’s the one we’re going to write as a matrix equation and invert.

C2n = −1
2m,2n

( Ce2m(𝜉0)
Me2m(𝜉0)

−
Ce′2m(𝜉0)
Me′2m(𝜉0)

)
(8.36)
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where

2m,2n =
( Ce∗2m(𝜉0)

Me2m(𝜉0)
−
𝜇0

𝜇1

Ce∗′2m(𝜉0)
Me′2m(𝜉0)

) p2m

p2n

ce2n(𝜃)
ce2m(𝜃)

⎡⎢⎢⎢⎢⎣
2A(2n)

0 A∗(2m)
0 +

∞∑
r=1

A(2n)
2r A∗(2m)

2r

2
(

A(2m)
0

)2
+

∞∑
r=1

(
A(2m)

2r

)2

⎤⎥⎥⎥⎥⎦
and then the modal coefficient of the scattered field, which as you may or may not remember is the
thing we’ve been trying to find, can be written

A2m = − 1
M2m(𝜉0)

⎧⎪⎪⎨⎪⎪⎩
Ce2m(𝜉0) +

∞∑
n=0

C2nCe∗2n(𝜉0)
p2m

p2n

ce2n(𝜃)
ce2m(𝜃)

⎡⎢⎢⎢⎢⎣
2A(2n)

0 A∗(2m)
0 +

∞∑
r=1

A(2n)
2r A∗(2m)

2r

2
(

A(2m)
0

)2
+

∞∑
r=1

(
A(2m)

2r

)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

(8.37)

So now we’re left with calculating the A’s and doing a matrix inversion, except that I haven’t yet
defined the joining factors p2n along with the other three that we’re going to need after we’ve mul-
tiplied our boundary condition equations by ce2n+2, se2n+1, se2n+2, respectively, and integrated over
𝜂 to get expressions for B2m+2, A2m+1 and B2m+1, and then doing the same sort of algebra we just did
to find A2m. Fortunately, McLachlan defines these “joining factors” for us in his Appendix I as:

p2n = ce2n(0, q)ce2n

(
𝜋

2
, q
)
∕A(2n)

0

p2n+1 = −ce2n+1(0, q)ce′2n+1

(
𝜋

2
, q
)
∕
√

qA(2n+1)
1

s2n+1 = se′2n+1(0, q)se2n+1

(
𝜋

2
, q
)
∕
√

qB(2n+1)
1

s2n+2 = se′2n+2(0, q)se′2n+2

(
𝜋

2
, q
)
∕qB(2n+2)

2

Let’s put aside for the moment the numerical implementation of these, and get an expression for
B2m+2 by multiplying the boundary condition equations by se2m+2(𝜂) and integrating over 𝜂 from 0
to 2𝜋 with 𝜉 = 𝜉0, pretty much as we did before. For the tangential electric field, we get

Se2m+2(𝜉0) + B2m+2Ne(1)2m+2(𝜉0) =
∞∑

n=0
D2n+2Se∗2n+2

s2m+2

s2n+2

se∗2n+2(𝜃)
se2m+2(𝜃)

⎡⎢⎢⎢⎣
∑∞

r=0 B(2n+2)
2r+2 B∗(2m+2)

2r+2∑∞
r=0

(
B(2m+2)

2r+2

)2

⎤⎥⎥⎥⎦
(8.38)

and for the tangential magnetic field, we get

Se′2m+2(𝜉0) + B2m+2Ne(1)
′

2m+2(𝜉0) =
𝜇0

𝜇1

∞∑
n=0

D2n+2Se∗′2n+2
s2m+2

s2n+2

se∗2n+2(𝜃)
se2m+2(𝜃)

⎡⎢⎢⎢⎣
∑∞

r=0 B(2n+2)
2r+2 B∗(2m+2)

2r+2∑∞
r=0

(
B(2m+2)

2r+2

)2

⎤⎥⎥⎥⎦
(8.39)

Divide these by Ne(1)2m+2(𝜉0) and Ne(1)
′

2m+2(𝜉0), respectively, and then subtract to get

D2m+2 = 𝒬−1
2m,2n

(
Se2m+2(𝜉0)
Se∗2m+2(𝜉0)

−
Se′2m+2(𝜉0)

N(1)′
2m+2(𝜉0)

)
(8.40)
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where the matrix we need to invert is

𝒬2m,2n =
∞∑

n=0
D2n+2

s2m+2

s2n+2

se∗2n+2(𝜃)
se2m+2(𝜃)

⎡⎢⎢⎢⎣
∑∞

r=0 B(2n+2)
2r+2 B∗(2m+2)

2r+2∑∞
r=0

(
B(2m+2)

2r+2

)2

⎤⎥⎥⎥⎦
(

Se∗2m+2(𝜉0)
Se2m+2(𝜉0)

−
𝜇0

𝜇1

Se∗′2m+2(𝜉0)

N(1)∗′
2m+2(𝜉0)

)
(8.41)

after which we can find the second of our four modal coefficients for the scattered field

B2m+2 = − 1
Ne(1)2m+2(𝜉0)

⎧⎪⎨⎪⎩Se2m+2(𝜉0) +
∞∑

n=0
D2n+2Se∗2n+2

s2m+2

s2n+2

se∗2n+2(𝜃)
se2m+2(𝜃)

⎡⎢⎢⎢⎣
∑∞

r=0 B(2n+2)
2r+2 B∗(2m+2)

2r+2∑∞
r=0

(
B(2m+2)

2r+2

)2

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(8.42)

There are two more of these, A2m+1 and B2m+1, but I feel confident that you can work out what those
want to be. It’s not just that I’m a little too lazy to type them out for you, but I think it’s important
for you to work those out for yourself and then while you’re at it check my algebra. The Mathieu
functions are unfamiliar and the notation is rather confusing. It’s good practice to assume that there
might could be a typo. I’ve tried to be careful and get things right, but in science, skeptical disbelief
is good manners. Politicians often get offended when people don’t automatically believe everything
they say, but scientists expect other scientists to question their assertions and help correct any typos.
I suppose we could adopt a famous Cold War expression that President Reagan used vis-a-vis the
Soviet Union: trust, but verify.

So now, assuming that you’ve checked my work and worked out the last two expressions for
the A’s and B’s, it’s time to figure out how to calculate them and then do the necessary matrix
inversions and make a few plots. As I mentioned, Chapter 3 in McLachlan discusses numerical
issues, but remember that this book was written at the start of the Cold War when computers were
still mostly humans, so my advice is to ask around for somebody who has made available code
to calculate them. Presumably, you’ll find it together with code you hunted up for the Mathieu
functions themselves.

It’s always good practice to start by reproducing plots of earlier authors that have stood the test
of time. Coming soon are some plots from the Erratum to Yeh’s early work on scattering from a
dielectric ribbon. After a quarter century, one of Yeh’s students was apparently trying to reproduce
his early plots and couldn’t. They identified a typo in Yeh’s original code, rechecked things carefully
(we hope) and then published some new plots [4].

Exercise 8.2 Reproduce the corrected figures from the Erratum to Yeh’s foundational paper.
Although that 1998 paper is available online [4], the copy you’ll find there isn’t great. Note that
the plots I’ve included in Figure 8.5–8.8 are actually sketches, drawn from that low-quality PDF. I
could have walked across campus to the physics library and taken the bound volume back across
campus to scan the pages and then returned the bound volume. It’s kind of a nice day today, but
there are two buildings under construction between here and there and the particular volume
I want is probably at off-site storage these days and it’s technically a holiday here today so the
librarians are who-knows-where. Hence, some of the smaller backscattering/lateral lobes aren’t
drawn. When you make actual plots, pay special attention to the details that I haven’t reproduced.
You’ll come across this issue often because classic results from the predigital days are often
scanned at poor resolution and when you’re trying to benchmark your new code against them, it
can be frustrating.
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Figure 8.5 Polar plots of scattering of |H
𝜂
| from a dielectric ribbon with (k0q)2 = 10. The incident electric

vector is polarized in the axial direction. Solid line is for 𝜉0 = 0.1; dashed line is for 𝜉0 = 0.2; dotted line is
for 𝜉 = 0.5. Incident wave is vertical in (a) and at 45∘ as indicated by the arrow in (b). Note that in (b), I’m
confident of the forward-scattering lobes, but not the smaller back-scattered lateral lobes. You should
check those.
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Figure 8.6 Polar plots of scattering of |H
𝜂
| from a dielectric ribbon with (k0q)2 = 1.0. The incident electric

vector is polarized in the axial direction. Solid line is for 𝜉0 = 0.1; dashed line is for 𝜉0 = 0.2; dotted line is
for 𝜉 = 0.5. Incident wave is vertical in (a) and at 45∘ as indicated by the arrow in (b).



8.3 Scattering from a Dielectric Elliptic Cylinder 275

η = 90°

η = 270°

η = 180° η = 0°

η = 270°

(a) (b)

η = 180° η = 0°

η = 90°

Figure 8.7 Polar plots of scattering of |E
𝜂
| from a dielectric ribbon with (k0q)2 = 10. The incident magnetic

vector is polarized in the axial direction. Solid line is for 𝜉0 = 0.1; dashed line is for 𝜉0 = 0.2; dotted line is
for 𝜉 = 0.5. Incident wave is vertical in (a) and at 45∘ in (b).
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Figure 8.8 Polar plots of scattering of |E
𝜂
| from a dielectric ribbon with (k0q)2 = 1.0. The incident

magnetic vector is polarized in the axial direction. Solid line is for 𝜉0 = 0.1; dashed line is for 𝜉0 = 0.2;
dotted line is for 𝜉 = 0.5. Incident wave is vertical in (a) and at 45∘ in (b).
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8.3.2 Numerical Implementation of Mathieu Functions

One of my graduate students just rolled his eyes at me. He’s about the same age as my daughter,
so I’m used to it. I had just pulled from a bookshelf in the lab a 1996 book Computation of
Special Functions (https://www.amazon.com/Computation-Special-Functions-Shanjie-Zhang/
dp/0471119636) and showed him that there was a 3.5-in diskette in a pocket in the back with
FORTRAN code. Also, my wife presumably rolls her eyes at me when I talk excitedly about
finding a newly published review paper that gives a historical perspective on the computation and
application of Mathieu functions [6]. My wife and I have been together for more than 40 years, so
she knows to turn her head slightly when she rolls her eyes. I make no comment about her daily
Talbots delivery.

I’m feeling much better today about numerical issues surrounding Mathieu functions. The
FORTRAN from that 1996 book is now readily available via a direct translation, performed using
f2matlab, of the original FORTRAN-77 implementations from the floppy disk at the back of the
book, although there are complaints about ease of use and potential bugs. The particular things
that we’ll need are the expansion coefficients for the Mathieu functions (the A’s and B’s) and then
the Mathieu functions and modified Mathieu functions and derivatives. Before starting to make
plots, it’s probably good practice to poke around a bit and see if there’s something more recent.
General Mathieu functions with arbitrary parameters V1.06 or Mathieu Functions Toolbox v.1.07

which is a computational toolbox that includes routines for the characteristic values, the expansion
coefficients, and the four categories of angular and radial Mathieu functions together with their
derivatives: even–even, even–odd, odd–even, and odd–odd. My preliminary conclusion is that
making plots of the scattering from a dielectric elliptic cylinder is straightforward numerically. It’s
not trivial, though.

I feel like I should also include some discussion from the 2020 review paper [6] that states in the
introduction that they “believe that there is still no fully satisfactory code available” although they
do seem to be fans of the Digital Library of Mathematical Functions (https://dlmf.nist.gov/28.1).
They further opine that the use of Mathieu functions and modified Mathieu functions in the solu-
tion of physical problems is attractive because the functions are analogous to harmonic functions,
and expansions in terms of them can be efficient in comparison with direct numerical solution of
the PDE model, but in practice the available software might be restricted to real arguments or use
a normalization different from the one desired (apparently there are at least three normalizations
in common use) or the software may fail to be accurate for “difficult” values of the problem param-
eters. I get it. Mathieu functions are tricky. I think I’ll stick to my positive spin that this trickiness
provides a barrier to competition. My wife understands this, which is why she turns her head before
she rolls her eyes.

A bit more from [6] seems appropriate. It was Sir Edmund Taylor Whittaker who bestowed the
name Mathieu equation and Mathieu functions. “Attributing a person’s name to an equation or
a function is a significant event in mathematics because people (even mathematicians) are social
animals, and we simply pay more attention when a person’s name is involved. Such namings often
get it wrong, of course: ‘Stigler’s Law of Eponymy’ states that no scientific discovery is named after
its original discoverer.” In this case, I agree that Mathieu deserves the credit. I also agree that “A

6 https://www.mathworks.com/matlabcentral/fileexchange/27101-general-mathieu-functions-with-arbitrary-
parameters-v1-0, MATLAB Central File Exchange.
7 https://www.mathworks.com/matlabcentral/fileexchange/22081-mathieu-functions-toolbox-v-1-0, MATLAB
Central File Exchange.

https://www.amazon.com/Computation-Special-Functions-Shanjie-Zhang/dp/0471119636
https://www.amazon.com/Computation-Special-Functions-Shanjie-Zhang/dp/0471119636
https://dlmf.nist.gov/28.1
https://www.mathworks.com/matlabcentral/fileexchange/27101-general-mathieu-functions-with-arbitrary-parameters-v1-0
https://www.mathworks.com/matlabcentral/fileexchange/27101-general-mathieu-functions-with-arbitrary-parameters-v1-0
https://www.mathworks.com/matlabcentral/fileexchange/22081-mathieu-functions-toolbox-v-1-0
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Course of Modern Analysis” by Whittaker and Watson is an excellent place to start any serious
study of Mathieu functions.

Also, since the book by McLachlan that I’ve mentioned repeatedly owes much to the work by
Edward Lindsay Ince, a research student of Whittaker who died of leukemia at age 49, I think it’s
fitting to include this quote included in [6] from the obituary that Whittaker wrote about Inge’s
sensibility with regard to computation:

‘Ince held that an important part of a pure mathematician’s duty is to provide tables for the
use of physicists and astronomers, and he was well aware that the possibility of construct-
ing such tables without a colossal expenditure of time and energy depends on the progress
of theoretical analysis.’ Whittaker remarks that Ince’s 1932 tables of the Mathieu functions
with their zeros and turning points was ‘A splendid piece of work, performed single-handed
save for some help by an Egyptian assistant.’ Ince gave the name of his helper, when he
acknowledged Mansy Shehata, who was then an Assistant in Pure Mathematics at the Egyp-
tian University in Cairo. Ince also acknowledged grant support in purchasing calculating
machines, which seemed to be of significant use.

8.4 Scattering of Elastic Waves by an Elliptic Cylindrical Inclusion

The 1971 Rand Corporation report by Pao and Mow [7] is now available as a downloadable PDF,
so you should get yourself a copy. I still have a version that I photocopied more than 30 years ago
and then recently ran back through a high-end scanner to get a PDF. Although the copy is clean
and it scanned quite well, it’s a little hard to read because it was typewritten. On a typewriter. Prob-
ably one of those IBM Ball Selectric typewriters with the interchangeable balls to do the Greek
characters in equations. I remember as a graduate student helping my advisor put together drafts
of proposals for the woman, named Anne, who used such a typewriter to turn a monstrosity that
we had assembled by literally cutting and pasting from other documents and then annotated by
hand and inserted handwritten text and equation and whatnot. Anne would turn it into a pol-
ished document ready to take to the copy center. Then I foolishly showed what I could do with
Tex, the precursor to LaTex, and inadvertently volunteered myself to type all subsequent propos-
als. Oops.

Pao and Mow include a chapter on Elliptic Cylinder Problems, where they discuss elastic wave
scattering from elastic cylinders of elliptical cross section. Their opening paragraph is worth tran-
scribing. “Basically, the diffraction of waves by an elliptic cylinder is not much different from the
diffraction caused by a circular cylinder, especially when the eccentricity of the elliptical cross
section is small. But in mathematical analysis, because of the geometry of the scatterer, an entirely
different wave function is used, involving products of Mathieu functions; the angular Mathieu func-
tion contains the wave number in its argument. Thus at the boundary of an ellipse, the wave func-
tions which are the sum of the P and S wave parts do not form an orthogonal set, and the boundary
conditions cannot be satisfied exactly by using the wave-function expansion method. This imposes
a serious difficulty in calculating stresses and displacements near the scatterer.” That sounds rather
ominous, of course, but in the second paragraph, they reassure us. “We shall, however, carry out
the analysis as far as we can in a manner analogous to that in the previous chapter, and indicate
how to get around this particular difficulty.” They also state the perhaps obvious point. “The liter-
ature concerning the diffraction of elastic waves is much less abundant for elliptic cylinders than
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for circular cylinders or spheres.” I’d also like to add that this paragraph looks nicer when properly
typeset.

Since we’re going to follow the same solution procedure as for elastic wave scattering from cylin-
ders and spheres, we know that we’re going to be needing certain mathematical quantities in this
new coordinate system. Pao and Mow helpfully include them, so I’m simply going to typeset them
here for when we need them. The first quantity is a factor that shows up so often it wants to have
its own symbol J, where

J2 = cosh2
𝜉 − cos2

𝜂 = 1
2
(cosh 2𝜉 − cos 2𝜂)

This will make expressions for grad, div, curl, and all that a bit simpler

∇f = 1
qJ
(

ê
𝜉
𝜕
𝜉
f + ê

𝜂
𝜕
𝜂
f
)
+ êz𝜕zf (8.43)
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(
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(

qJF
𝜂

)
+ 𝜕zFz (8.44)
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z f (8.45)

As is usual, we do a Helmholtz decomposition of the displacement field into longitudinal and trans-
verse components (𝜑,𝜓, 𝜒), where the longitudinal part has no curl, so it can be written as the
gradient of a scalar function and the transverse part has no divergence so its two polarizations can
be written as the curl and curl–curl of two other scalar functions. Each of these scalar functions
satisfy the scalar wave equation, which looks like this in elliptic cylinder coordinates[

1
q2J2

(
𝜕

2
𝜉
+ 𝜕2

𝜂

)
+ 𝜕2

z

]
(𝜑,𝜓, 𝜒) = k2(𝜑,𝜓, 𝜒) (8.46)

where k is the wave number, which is different for the longitudinal and transverse waves. Since
the boundary conditions are going to be continuity of displacements and stresses (tractions) at the
scatterer surface 𝜉 = 𝜉0 we’re going to need the components of the displacement in terms of the
potential functions and then the stress–displacement relations. Following the lead of Pao and Mow,
we list the pertinent equations without further explanation
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and
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(8.48)
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We won’t need the 𝜒 terms, though, since the SH modes are decoupled from the L and SV waves.
The latter two are coupled at the boundary, so for either incident L or SV waves, we have to account
for both L and SV modes in both the scattered and the transmitted fields. You should probably steel
yourself at this point for some straightforward, but highly nontrivial algebraic manipulations. In
addition, I think it’s important to prepare emotionally for having to give up because the algebraic
manipulations may not be worth it in the end. With that in mind, here are the L and SV potential
functions for the incident, scattered, and transmitted fields. Let’s consider first the case where the
incident wave is a longitudinal wave

𝜑
inc = 2𝜑0

∞∑
n=0

[
Cen(𝜉)cen(𝜂)cen(𝜃0) + Sen(𝜉)sen(𝜂)sen(𝜃0)

]
(8.50)

𝜑
scat =

∞∑
n=0

[
BnMen(𝜉)cen(𝜂)cen(𝜃) + CnNen(𝜉)sen(𝜂)sen(𝜃)

]
(8.51)

𝜓
scat =

∞∑
n=0

[
DnMen(𝜉)cen(𝜂)cen(𝜃) + EnNen(𝜉)sen(𝜂)sen(𝜃)

]
(8.52)

and noting with the ∗ that the scatterer has different material properties

𝜑
trans =

∞∑
n=0

[
FnCe∗n(𝜉)ce∗n(𝜂)cen(𝜃) + GnSe∗n(𝜉)se∗n(𝜂)sen(𝜃)

]
(8.53)

𝜓
trans =

∞∑
n=0

[
HnCe∗n(𝜉)ce∗n(𝜂)cen(𝜃) + InSe∗n(𝜉)se∗n(𝜂)sen(𝜃)

]
(8.54)

In these Bn-In are the modal coefficients.
We can plug these into the expressions for the stress and displacement components and write

the four boundary condition equations at 𝜉 = 𝜉0, and then sequentially multiply each of them
by cen(𝜂), sen(𝜂) and integrate over 𝜂 to see how much orthogonality does for us once we’ve
expanded cen(𝜂) and sen(𝜂) in Fourier series as before. Here’s the part that we’re going to need
to have prepared emotionally for. We’re used to the idea that 𝜂 depends on material properties,
because that issue came up when we considered electromagnetic scattering from a dielectric
elliptic cylinder. What’s not obvious from the notation that we’re using is that orthogonality for
the scattered mode-converted wave is going to have the same issue because the wave numbers are
different for L and SV waves. I hope you’re not too disappointed about that. It’s quite a serious
complication. Stay strong, though, because it may not be a deal breaker.

As much as I’m tempted to plow ahead at full speed, I think it makes good sense to redirect just a
bit and consider the simpler case of elastic wave scattering from an elliptic cylindrical cavity. This
problem will be plenty complicated, but also has innumerable real-world applications. There won’t
be any transmitted waves, of course, so that allows us to focus on the issue of how the presence of
mode converted SV waves affects the orthogonality. Moreover, we’ll get a bit of practice dealing
with the shocking amount of complexity that’s added when boundary conditions involve stresses. I
promise that we’ll come back to the problem of longitudinal wave scattering from an elastic elliptic
cylinder. Actually, promise is too strong of a word to use here. What I actually mean is that I’m
pretty sure that it’s going to be too unwieldy to include in this chapter, but in principle, it probably
could be done and so what I’ll probably include in this chapter is acoustic scattering from a solid
elliptic cylinder in a fluid. Sorry, not sorry.

Here’s what the boundary condition equations look like for the elliptic cylinder cavity. The first
is the normal stresses 𝜎inc

𝜉𝜉
+ 𝜎scat

𝜉𝜉
= 0 for 𝜉 = 𝜉0
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∞∑
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The second boundary condition equation is for the shear stresses 𝜎inc
𝜉𝜂

+ 𝜎scat
𝜉𝜂

= 0 for 𝜉 = 𝜉0
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OK, so I’m breaking my promise from a couple of pages ago. You may or may not have even made it
this far and were planning to look at some plots and call it good. I didn’t include any plots, though.
What I’m hoping is that your take-away message is: if I ever find an urgent need to solve these
elliptic-cylinder scattering problems involving elastic waves, I had better budget some significant
time for the analysis and computations and that it’s probably doable, but really tricky.

8.5 Scattering from Spheroids

If the Mathieu functions didn’t scare you off, then you’re probably going to be OK with the eigen-
function solutions for scattering from spheroids. The analysis methods will be analogous to what
we did for Mie scattering from spheres, of course, but the eccentricity of the scatterer and orienta-
tion relative to the incident field is going to matter. Spheroids come in two extremes: needle-like
and disk-like. Not quite so extreme spheroids: cigar and pancake. Of course, cigar-shaped objects
might be excellent first approximations to use for radar scattering from missiles and sonar scatter-
ing from submarines, so it’s not surprising that there is a huge literature. Penny-shaped cracks and
delaminations can be a big deal in nondestructive evaluation, so there’s a sizable literature for that
as well. We’ll be able to write the equations to set up these various problems, but we may find that
even today, there are numerical difficulties. We should probably steel ourselves that we might only
be able to get the results we’re after for special cases.

The prolate spheroidal coordinate system is defined with the relations

x = 1
2

a sinh𝜇 sin 𝜃 cos𝜙

y = 1
2

a sinh𝜇 sin 𝜃 sin𝜙 (8.55)

z = 1
2

a cosh𝜇 cos 𝜃

and with the oblate coordinates obtained from these by formally changing a into −ia and simulta-
neously changing cosh𝜇 into i sinh𝜇. Consequently, when solutions for the prolate case have been
obtained, the oblate solutions invoke a fairly simple extension to imaginary values and coordinates.
As I was typing that sentence just now, it seemed a little dismissive of the difficulties we may yet
encounter, but I could be wrong so stay tuned.

The Helmholtz equation ∇2
𝜓 + k2

𝜓 = 0 has the following representation in prolate spheroidal
coordinates:

1
sinh𝜇

𝜕

𝜕𝜇

(
sinh𝜇𝜕𝜓

𝜕𝜇

)
+ 1

sin 𝜃
𝜕

𝜕𝜃

(
sin 𝜃 𝜕𝜓

𝜕𝜃

)
(8.56)

+ sinh2
𝜇 + sin2

𝜃

sinh2
𝜇sin2

𝜃

𝜕
2
𝜓

𝜕𝜙
2 + 1

4
(
cosh2

𝜇 − cos2
𝜃

)
(ka)2

𝜓 = 0

Of course the next step is to do separation of variables. In the axial coordinate 𝜙, the solutions are
cos(m𝜙) and sin(m𝜙) for m = 0, 1, 2,… and 0 ≤ 𝜙 ≤ 2𝜋. For the other two coordinates, we define
𝜉 = cosh𝜇 and 𝜂 = cos 𝜃 and have the following ODEs:

d
d𝜉

[(
𝜉

2 − 1
) dJ

d𝜉

]
−
[

A − h2
𝜉

2 + m2

𝜉
2 − 1

]
J = 0 (8.57)

d
d𝜂

[(
1 − 𝜂2) dS

d𝜂

]
+
[

A − h2
𝜂

2 − m2

1 − 𝜂2

]
S = 0 (8.58)
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where h = 1
2

ka and A is the separation constant. Hence, we can write the general solution as:

𝜓(𝜙, 𝜂, 𝜉) = cos(m𝜙)
sin(m𝜙) S(𝜂)J(𝜉) (8.59)

Note that the two aforementioned ODEs are really the same. One is for S(𝜂) involving the behavior
of the solutions between the singular points −1 and +1 and the other is for J(𝜉) for the range +1 to
∞. We can therefore consider the solutions of one equation for z, where 𝜂 comprises the range −1
and +1 and 𝜉 over the range from +1 to ∞.

The plane wave expansion in prolate spheroidal coordinates is

ei⃗k⋅r⃗ = 2
∑
m,l

𝜖mil

Λml(h)
Sml(h, cos 𝜃0) cos[m(𝜙 − 𝜙0)]Sml(h, cos 𝜃)jeml(h, cosh𝜇) (8.60)

where 𝜖m is the Neumann factor, Λml(h) are the normalization constants, and

i⃗k ⋅ r⃗ = k
[
z cos 𝜃0 + x sin 𝜃0 cos𝜙0 + y sin 𝜃0 sin𝜙0

]
= h

[
cosh𝜇 cos 𝜃 cos 𝜃0 + sinh𝜇 sin 𝜃 sin 𝜃0 cos(𝜙 − 𝜙0)

]
In these expressions, jeml(h, cosh𝜇) are the spheroidal radial functions of the first kind and

Sml(h, cos 𝜃) are the prolate spheroidal angular functions. Note that for h → 0 these will reduce to
the usual spherical Bessel functions and Legendre polynomials.

Let’s first consider the simplest possible case of a plane acoustic wave scattering from a rigid
spheroid. Without loss of generality, we can set 𝜙0 = 0 and write the incident plane wave of unit
amplitude as:

𝜓
inc = 2

∑
m,l

𝜖mil

Λml(h)
Sml(h, cos 𝜃0)Sml(h, cos 𝜃)jeml(h, cosh𝜇) cos[m𝜙] (8.61)

and we then assume a scattered field of the form

𝜓
scat = 2

∑
m,l

𝜖mil

Λml(h)
AmlSml(h, cos 𝜃)heml(h, cosh𝜇) cos[m𝜙] (8.62)

where heml(h, cosh𝜇) is the radial function of the third kind that I like to call the “spheroidal Hankel
function” even though I’m pretty sure that would piss off some mathematician. Speaking of which,
in 2011, a Cal State Northridge mathematics professor was accused of urinating on a colleague’s
door.8

Back to serious business. For a rigid spheroid, the boundary conditions are

𝜕𝜓
inc

𝜕𝜉

= 𝜕𝜓
scat

𝜕𝜉

(8.63)

as the surface 𝜉 = 𝜉0 and remembering that 𝜉 = cosh𝜇, we can let prime indicate differentiation
with respect to 𝜉 and do the simple algebra to find

8 Tihomir Petrov, 43, was allegedly caught on surveillance camera urinating on his colleague’s office door. It’s a
literal pee tape. “My client is a man of impeccable character,” said his lawyer with a straight face. CBS News
headlined their story, “Pissing Match between two Professors.” The camera was hidden by an engineering colleague
when officials suspected the puddles next to a certain math whiz’s office were of urine. I wonder what the source of
the argument between the two math profs was?
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Aml = Sml(h, cos 𝜃0)
je′lm(h, 𝜉0)
he′lm(h, 𝜉0)

(8.64)

which then fully determines the expression for the scattered field. What we’re going to want,
though, is the far-field scattering pattern, which for r → ∞ should look like

𝜓
scat → f (𝜃, 𝜙)eikr∕r (8.65)

For large arguments, we have

heml(h, 𝜉) = −i(−i)m+leih𝜉∕h𝜉 (8.66)

where h = ka∕2. We can thus write

|f (𝜃, 𝜙)| = |||||2
∑
lm

(−i)l+m 𝜖m

Λlm(h)
Sml(h, 𝜂)Slm(h, 𝜂0)

je′lm(h, 𝜉0)
he′lm(h, 𝜉0)

cos m𝜙
||||| (8.67)

In Figure 8.9 are shown two scattering patterns, adapted from [8] who did her9 computations in
1951.10 They note that the various wave functions needed had not yet been tabulated, “and there-
fore, it was necessary to compute tables of functions of sufficient extent and accuracy to enable
us to complete the computation” which I find really impressive. The paper includes four sets of
six plots, each with two scattering patterns on them. Figure 8.9 also shows scattering patterns for
four different angles relative to the long axis of the spheroid. The work was funded by the Office of
Naval Research, so the obvious application was sonar scattering from submarines. A rigid prolate
spheroid is a pretty good first approximation for that.

Exercise 8.3 Since radar people say that acoustics is just a scalar version of electromagnetics, does
this solution for acoustic scattering from a rigid spheroid apply to the corresponding EM scattering
from a perfectly conducting spheroid?

The answer to this exercise seems to be a hard nope [9]. Sorry. Kerker [10] references a
1950 U. Michigan Engineering Research Institute report11 by F.W. Schultz, “Scattering by a

9 I’ve been wondering about Sara Granger, who was presumably the student of Prof. R.D. (Bob) Spence and did
these calculations. So far, no luck, but I did find the following about Helen Spence, “Helen Spence came to MSU as a
student in 1936 and worked as a lab assistant in the physics department. After she graduated in early 1939, she
taught math, physics and chemistry in a public school in Portland, Michigan. In 1942 she married Bob Spence and
they moved out East where her husband taught radar to Army and Navy personnel while she worked in the
theoretical division of the Massachusetts Institute of Technology (MIT) Radiation Lab on state-of-the-art computers
(Monroes and Marchants mainly electrically-powered calculating machines that carried 10 digits and could add,
subtract, multiply and divide but not figure square roots). Spence and her husband came to MSU in 1947 where he
taught in the Physics Department and she was an instructor in the Computer Science Department, teaching
Assembly languages. She helped program the first major computer on campus and eventually taught FORTRAN in
the 1960s. Mrs. Spence retired in 1987.” Her obituary tells a bit more about her life https://www.legacy.com/us/
obituaries/lsj/name/helen-spence-obituary?id=18217236. That leads me to wonder whether the plots in [8] were
done by hand or on an early computer. If it was an electronic computer rather than a human computer, that gadget
would have been essentially hand built. Apparently the MSU machine shop has the following quote on a banner,
which I find apropos, “If you’re not building original research equipment, you’re not doing original research.” – Dr.
Robert D. Spence.
10 My mother wasn’t allowed to take math in high school in the 1950s, and then she needed inferential statistics to
evaluate the data for her dissertation. She was being raised by her father’s big sister, because my grandmother had
died quite young, who insisted that my mother learn practical skills to be able to support herself when needed.
11 https://deepblue.lib.umich.edu/handle/2027.42/7482.

https://www.legacy.com/us/obituaries/lsj/name/helen-spence-obituary?id=18217236
https://www.legacy.com/us/obituaries/lsj/name/helen-spence-obituary?id=18217236
https://deepblue.lib.umich.edu/handle/2027.42/7482
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Figure 8.9 Scattering for acoustic wave incident along the axis of a rigid spheroid (a,b). (a) is for 𝜃 = 0 and
h = 1 with solid line for 𝜉 = 1.044 and dashed line for 𝜉 = 1.077. (b) is for 𝜃 = 0 and h = 2 with solid line
for 𝜉 = 1.005 and dashed line for 𝜉 = 1.020. The other four plots are for a rigid spheroid with h = 3 for
different angles of incidence. In each, the solid line is for 𝜉 = 1.005 and the dashed line for 𝜉 = 1.020. (c) is
for the incident along the axis of the spheroid. (d) is for 30∘ angle of incidence, as indicated by the arrow.
(e) is for 60∘ angle of incidence, as indicated by the arrow. (f) is for 90∘ angle of incidence.

prolate spheroid” with the comment that “an explicit solution for the scattering coefficients has
not been obtained except for the special case of the backscattering by a perfectly conducting
prolate spheroid at nose-on incidence.” I looked up that report and put the hyperlink in the
footnote for you. It’s amazing to read, particularly because the text is typed and the innu-
merable equations are handwritten so very beautifully. Here’s the expression for the scattered
field:
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except that in these, the modal coefficients 𝛼0l and 𝛽1l have to be determined by numerical
inversion of the infinite systems of equations:

Alas. Schultz does give the exact expression for the corresponding scalar case, but doesn’t show
any plots, so I guess in this rivalry, Michigan State beat U. Michigan. Again according to Kerker,
T.B.A. Senior12 carried out numerical studies in 1967, so advantage Blue.

12 Thomas B. A. Senior was known for his fundamental contributions to electromagnetic and acoustic scattering,
for his remarkable legacy of service and leadership to the department and professional community, and for his
excellence as an educator. Born 26 June 1928 in Yorkshire, England, Professor Senior received his MSc and PhD
degrees in Applied Mathematics from Manchester and Cambridge Universities in 1950 and 1954, respectively. He
joined the University of Michigan in 1957 as a researcher at the famed Willow Run Laboratories. He was specifically
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Let’s console ourselves by writing down the answer for sound scattering from an acoustically soft
prolate spheroid.

|f (𝜃, 𝜙)| = |||||2
∑
lm

(−i)l+m 𝜖m

Λlm(h)
Sml(h, 𝜂)Slm(h, 𝜂0)

jelm(h, 𝜉0)
helm(h, 𝜉0)

cos m𝜙
||||| (8.68)

which is pretty similar to what we had for the acoustically hard scatterer. You might have to stare
at it for a moment to notice that the only difference is that there’s no derivatives for the radial
functions in the amplitude term. An example of this situation might be a spheroidal gas bubble in
a liquid. There are a fair number of sonar and ultrasound situations where this could be relevant.
Go ahead and make some plots, but do reproduce some or all of the hard-spheroid plots to make
sure your code is running properly before doing these. One of the issues you should find a little
frustrating is that the notation for these functions seems to be all over the map. Abromowitz and
Stegun have a helpful table, which lays out the notation of various authors in the early days. Little
things like, WTF is the “normalization” term Λlm(h) that some other authors call Nm,l and describe
as “the norm of the angular wave function.” I’m not deliberately torturing you by leaving things
like that a little ambiguous; it’s just that I want you to get into the habit of doing a little background
reading to orient yourself on new-to-you special functions before coding up equations and making
a bunch of plots.

Recall that I casually mentioned that the oblate coordinates are obtained from the prolate ones
by formally changing a into −ia and simultaneously changing cosh𝜇 into i sinh𝜇. I then went on
to assert that when solutions for the prolate case have been obtained, the oblate solutions invoke
a fairly simple extension to imaginary values and coordinates. I think I’m going to have to call
bullshit on myself because [3] has separate chapters for each. It’s true that the analysis is pretty
similar for the two kinds of spheroids, but I think it makes good sense to go through them both.
I’m not going to include the oblate case here, or suggest an exercise for you to do that analysis, but
if you should feel excited to do it, I hope that you’ll then show that the two cases match each other
when they tend to the common limit of spheres. Do that limiting case analytically, and also show
that for the acoustically soft scatterers they both match up with Anderson’s results in the spherical
bubble limits.

At this point, I had in mind discussing at length the important problem of penny-shaped cracks
in nondestructive evaluation. On 19 July 1989, a DC-10 (United Airlines flight 232) crash-landed
at the airport in Sioux City, Iowa, after suffering a catastrophic failure of its tail-mounted engine
due to an unnoticed manufacturing defect in the engine’s fan disk that resulted in the loss of many
flight controls. Of the 296 passengers and crew on board only 112 died, which counts as a win. A
hard-alpha inclusion had been present in the titanium billet, which was forged into the turbine
rotor hub (fan disk) of the tail-mounted engine and that resulted in a penny-shaped crack that
the inspectors subsequently missed. When that engine disintegrated explosively, the uncontained
failure took out the triple-redundant hydraulic lines making the plane almost impossible to control.
Miraculously, Dennis E. “Denny” Fitch, 46, a training-check airman was aboard Flight 232 as a
passenger. He had a total flight time of around 23,000 hours under his belt, including 2987 hours of

recruited by Kip Siegel for his experience detecting V2 missiles, first launched in WWII. Professor Senior’s research
turned to the detection of stealth aircraft in the 1960s. Working in the days before computers, he created many of the
analytical tools needed to predict how radar cross-section reduction could be accomplished using shaping and
radar-absorbing materials. His research directly impacted the design of stealth aircraft in the U.S. “Electromagnetic
and Acoustic Scattering by Simple Shapes” was a foundational work that emerged from Willow Run research on the
radar detection of aircraft and missiles. Prof. Senior directed the RADLAB at a time when military research,
especially classified research, on campus was a target for student activists. He passed away peacefully 24 November
2017 at the age of 89. See: http://ece.umich.edu/bicentennial/documents/radlab-history.pdf.

http://ece.umich.edu/bicentennial/documents/radlab-history.pdf
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Figure 8.10 Scattering cross sections for prolate (dots) and oblate (dashes) spheroids with aspect ratios of
2. (a) is for L-wave incidence; (b) is for SV -wave incidence. Plane waves are incident at 30∘ with respect to
the polar axes of the spheroids. The inclusion has velocities and density about 25% less than the
background material. Source: Adapted from [11].

DC-10 time with United. Fitch had learned of a 1985 crash of Japan Air Lines Flight 123, which was
caused by a catastrophic loss of hydraulic control, and had wondered if it was possible to control an
aircraft using throttles only so he practiced that with similar conditions on a simulator. The short
answer is he went to the cockpit to try it for real, and almost got the plane landed safely. You’ve
probably seen the video of the fiery crash taken through a fence.

So there’s lots of literature on elastic wave scattering from penny-shaped cracks, which are a
limiting case of an oblate-spheroidal cavity. In principle, such a problem can be addressed with
exactly the method discussed above. In practice, the elastic wave scattering method is frustrated by
the same issues that made electromagnetic wave scattering from a perfectly conducting spheroid a
whole lot more complex than the corresponding acoustic case. The issue seems to be orthogonality.
For the acoustic case, there are no transverse waves and it just happens to work out that orthogo-
nality allows the modal coefficients to be solved for without the pesky infinite summations over l
and m. Things don’t fall out so easily for the electromagnetic and elastic wave cases, because there
are transverse waves involved. You can still write the systems of boundary conditions equations as
a matrix, but you can’t just invert it term-by-term. Sorry.

It appears that a complete solution for the scattering of elastic waves by a spheroidal inclusion
has only recently appeared in the literature. In [11], the method that we’ve discussing is applied
to the scattering of elastic waves by prolate and oblate spheroidal inclusions. As per usual, the
problem is solved in the frequency domain where separation of variables leads to a solution involv-
ing spheroidal wave functions of the angular and radial kind. The problem is that for spheroids,
the boundary equations remain coupled with respect to one of the separation indices. Expanding
the angular spheroidal wave functions in terms of associated Legendre functions and using their
orthogonality properties does lead to a set of linear equations that can be solved to simultaneously
obtain solutions for all coupled modes of both scattered and interior fields. Figure 8.10 illustrates
the normalized scattering cross sections of [11] for L and SV wave incident at 30∘ with respect to
the polar axes of prolate and oblate spheroids.
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Scattering from Parallelepipeds

So we went down a bit of a rabbit hole in Chapter 8. We started out quite hopeful that our old
stand-by separation of variables approach was going to work for elliptic cylinders and spheroids.
We were somewhat tentative because the necessary special functions were unfamiliar, but we didn’t
let that totally scare us off. We were even amazed that people could do the by-hand numerical work
necessary to get plots in the days before computers became useful tools for research. We may even
have coded up some results and made our own plots that matched the classic results that were
included. But then orthogonality gave us some tough love, which Brittany S. Pierce from Glee says
“feels a lot like mean.” Back in the mid-1900s when people figured out that for many shapes the
Mie-scattering approach was a bit of a dead end, they didn’t just give up and go do something
else with their lives. The Cold War had heated up and understanding in excruciating detail the
interaction of acoustic, electromagnetic, and elastic waves with realistic scatterers was a matter of
national security. There was also the matter that billions of dollars of research money was going to
be available for academics and their PhD students to write their esoteric equations.

9.1 Integral Equations

A hot minute ago, there were no computers big enough to grid up 3D space and do FDTD simu-
lations of anything realistic. The best you could hope to do was some sorts of 2D approximations,
which might even work pretty well if the problem you were trying to model was axisymmetric
or something. 3D? Oh. Hell. No. You probably can’t imagine a world where teenagers aren’t all
walking around with semidisposable supercomputers in their pockets. But then you’re not about
to turn 60 and missed the following txt message from your wife yesterday: “Any chance you would
want to go axe throwing at 5:00pm? A group of people I work with (including Julie) are going to
practice so we don’t embarrass ourselves when we do this with the Board in October.” I happen
to carry a ruggedized flip phone with the camera deleted, and sometimes don’t notice it buzzing
in my pocket when I get a txt. My wife thought I was ignoring her. I thought she was just hangry
when she got home. She’s probably going to insist on getting me an iPhone for my birthday and set
it up, so it will buzz me loudly whenever it’s her messaging even if I have the ringer turned off or
whatever.

Anyway, if you can only ever hope to discretize things in two dimensions, the approach that you’ll
likely take to scattering is integral equations. You’ll call this family of methods “low-frequency”
techniques because you need a certain number of grid points per wavelength and you also
have to reproduce the geometry of the scatterer, so that is also going to be a constraint on your

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.
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computational requirements, but the good news is you’ll be able to consider scattering from a
cube. If the cube isn’t too big, of course.

I’m going to include a fairly standard derivation of integral equations for scattering, but it’s more
for completeness than anything. When I lecture on this for my graduate students, I lead with the
comment that these methods are somewhat passé, but there’s such a huge literature out there that
they should know about them.1

The three most common forms of Green’s theorem are

∫V
∇ ⋅ F⃗d𝑣 =

∫S
F⃗ ⋅ n̂dS

∫V
∇𝜙d𝑣 =

∫S
𝜙n̂dS (9.1)

∫V

(
∇ × F⃗

)
d𝑣 =

∫S

(
n̂ × F⃗

)
dS

where F⃗ is a vector field in some volume V and 𝜙 is a vector field in V . Here n̂ is the normal
vector of the surface S which encloses the volume V . Green’s theorem will be the magic answer to
simulating a 3D scattering problem when the biggest computer you have access to can only handle
things that are discretized in 2D. In words, Green’s theorem relates a volume integral (3D) to a
corresponding surface integral (2D). The basic idea is that we consider as our volume V the region
inside some spherical surface, excluding the source volume and the scatterer, and then use Green’s
theorem to convert to three 2D integrals over the interior surface of the bounding sphere as well
as the exterior surface of the source and the scatterer. We’ll then let the bounding sphere tend to
infinity and happily note that the scattered field tends to zero in that limit. We, of course, know
what the source term is, so that surface integral isn’t really a problem, and mostly we’re just left
with a surface integral over the scatterer whose shape is known. The surface of the scatterer is
discretized and the surface integral is replaced with a discrete summation. If we need to, we can
perform some mathematical gymnastics with Green’s theorem in order to pivot back and forth
between various volume and surface integrals in order to get things into a convenient form for
numerical implementation. We usually need to do that, but I’m going to proceed with the equations
before talking about that just a bit.

Consider two scalar fields 𝜙 and 𝜓 and construct the vector fields 𝜙∇𝜓 and 𝜓∇𝜙. Green’s
theorem gives

∫V

[
𝜙∇2

𝜓 + ∇𝜙 ⋅ ∇𝜓
]

dV =
∫S
𝜙n̂ ⋅ ∇𝜓dS (9.2)

∫V

[
𝜓∇2

𝜙 + ∇𝜙 ⋅ ∇𝜓
]

dV =
∫S
𝜓 n̂ ⋅ ∇𝜙dS (9.3)

Subtract these to get

∫V

[
𝜓∇2

𝜓 − 𝜓∇2
𝜙

]
dV =

∫S
n̂ ⋅ [𝜙∇𝜓 − 𝜓∇𝜙] dS (9.4)

1 Roger F. Harrington started out majoring in electrical engineering in 1943 at Syracuse University, but his studies
were interrupted by World War II, and he served as an instructor under the Electronics Training Program at the U.S.
Naval Radio Materiel School while working as an electronics technician. He completed his studies after the war,
receiving his PhD in 1952 at Ohio State. Now Professor Emeritus at Syracuse University, he is best known for his
contributions to computational electromagnetics with his development of method of moments. Harrington’s 1968
book, Field Computation by Moment Methods, is regarded as a pivotal textbook on the subject. You’ll want to get a
copy of his 1961 book, “Time-Harmonic Electromagnetic Fields” which was reissued by IEEE in 2001 because it’s a
classic.
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Now assume that 𝜙(r⃗) satisfies the scalar wave equation in V(
∇2 + k2)

𝜙(r⃗) = −a(r⃗) (9.5)

where a(r⃗) is the source term. Choose 𝜓(r⃗) as the Green’s function, which satisfies(
∇2 + k2)G(r⃗, r⃗′) = 𝛿(r⃗ − r⃗′) (9.6)

and write, for the LHS terms

∫V

[
𝜙(r⃗)∇2G(r⃗, r⃗′) − G(r⃗, r⃗′)∇2

𝜙(r⃗)
]

d𝑣 =
∫V

[
−𝜙(r⃗)𝛿(r⃗ − r⃗′) + a(r⃗)G(r⃗, r⃗′)

]
d𝑣 (9.7)

where the k2
𝜙G − k2G𝜙 term cancels. We can then write, since(

∇2 + k2)
𝜙(r⃗) = −a(r⃗) (9.8)

and

∫V
𝜙(r⃗)𝛿(r⃗ − r⃗′)dV =

{
𝜙(r⃗′) for r⃗′ in S
0 for r⃗′ outside S

(9.9)

the relation

∫V
a(r⃗)G(r⃗, r⃗′)d𝑣 +

∫S

[
G(r⃗, r⃗)∇𝜙(r⃗) − 𝜙(r⃗)∇G(r⃗, r⃗′)

]
⋅ n̂dS =

{
𝜙(r⃗′) for r⃗′ in S

0 for r⃗′ outside S
(9.10)

To use this relation, we are given the source function a(r⃗) inside V and the values of𝜙(r⃗) and n̂ ⋅ ∇(r⃗)
on S. Keep in mind that the surface S that we’re talking about here is going to be just the surface
of the scatterer because both the finite source term and the scattered field term are going to tend to
zero when the surface enclosing the volume V tends to infinity. Also note that in this scalar case,
we’re left with the field and the normal derivative of the field on that surface. In acoustics, the field
is zero at the surface of a hard scatterer and the normal derivative of the field is zero at the surface
for a soft scatterer. That’s, of course, why things were arranged this way.

For vector fields, we again start with the divergence theorem

∫V
∇ ⋅ F⃗d𝑣 =

∫S
F⃗ ⋅ n̂ds (9.11)

First, however, consider two vector fields F⃗1 and F⃗2 and the constructions

∇ ⋅
[
(∇ ⋅ F⃗1)F⃗2

]
= (∇ ⋅ F⃗1)(∇ ⋅ F⃗2) + F⃗2 ⋅ ∇(∇ ⋅ F⃗1)

∇ ⋅
[

F⃗2 × (∇ × F⃗1)
]
= (∇ × F⃗1) ⋅ (∇ × F⃗2) − F⃗2 ⋅ (∇ × (∇ × F⃗1))

Interchange F⃗1 and F⃗2 and subtract to get the pair of equations

∇ ⋅
{[

(∇ ⋅ F⃗1)F⃗2

]
−
[
(∇ ⋅ F⃗2)F⃗1)

]}
= F⃗2 ⋅ ∇(∇ ⋅ F⃗1) − F⃗1 ⋅ ∇(∇ ⋅ F⃗2)

∇ ⋅
{[

F⃗2 × (∇ × F⃗1)
]
−
[

F⃗1 × (∇ × F⃗2)
]}

= F⃗1 ⋅
(
∇ × (∇ × F⃗2)

)
F⃗2 ⋅

(
∇ × (∇ × F⃗1)

)
The divergence theorem then gives

∫V

[
F⃗1 ⋅ ∇(∇ ⋅ F⃗2) − F⃗2 ⋅ ∇(∇ ⋅ F⃗1)

]
d𝑣 =

∫S

[
(∇ ⋅ F⃗2)F⃗1 − (∇ ⋅ F⃗1)F⃗2

]
⋅ n̂ds (9.12)

and

∫V

[
−F⃗1 ⋅

(
∇ × (∇ × F⃗2)

)
+ F⃗2 ⋅

(
∇ × (∇ × F⃗1)

)]
d𝑣

= ∫S

[
F⃗1 × (∇ × F⃗2) − F⃗2 × (∇ × F⃗1)

]
⋅ n̂ds

(9.13)
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Now use my favorite vector identity

∇ × ∇ × ( ) = ∇(∇ ⋅ ( )) − ∇2( )

and add the two equations to get

∫V

[
F⃗1 ⋅ ∇2F⃗2 − F⃗2 ⋅ ∇2F⃗1

]
d𝑣 =

∫S

[
(∇ ⋅ F⃗2)F⃗1

−(∇ ⋅ F⃗1)F⃗2 + F⃗1 × (∇ × F⃗2) − F⃗2 × (∇ × F⃗1)
]
⋅ n̂ds (9.14)

Almost there. The electric and magnetic (vector) fields satisfy(
∇2 + k2) E⃗ = A⃗E

(
∇2 + k2) H⃗ = A⃗H (9.15)

and the corresponding Green’s function equation is(
∇2 + k2) ⃗G(r⃗, r⃗′) = 𝛿(r⃗ − r⃗′)x̂ (9.16)

where ⃗G(r⃗, r⃗′) ≡ x̂ ⋅ G(r⃗, r⃗′) = ⃗bG(r⃗, r⃗′). In this notation, G is the usual dyadic Green’s function for

electromagnetic fields, G is the scalar Green’s function, and ⃗G is the dot product of the dyadic
Green’s function with a constant vector (unit) in the direction of the source vector. Here ⃗b is a
constant vector.

I can’t help but point out at this stage that the notational complexities arise out of a stubborn
refusal to use index notation, which is so rarely needed in electromagnetics that most radar scatter-
ing experts never bothered learning it. Elastic wave scattering n00bs all have to use index notation
to write their basic equations, so they get rather peeved when highly educated colleagues who
are comfortable with all these Green’s-function gymnastics refuse to exploit tensor notation. This
particular issue caused a problem for me back in the day. My colleague was an expert in electro-
magnetic scattering, having just done a PhD on that subject at a top program. I was doing radar
scattering by accident and had just completed a PhD on elastic waves scattering. My colleague was
a major; I was a first lieutenant. I was comfortable with index notation; he wasn’t. We were work-
ing to understand a new class of meta-materials and needed to do Green’s function analysis. The
analysis was complex enough that we agreed to each do it separately and then compare results.
I did it Saturday morning while I was having a cup of coffee and on Monday morning was ready
to compare results. My colleague didn’t have a chance to work on it over the weekend. Kid’s soc-
cer practice or some such thing. Throughout that week and the one that followed, he was hard at
work in his office with stacks of books containing the necessary vector identities and whatnot, and
I figured out pretty quickly that I should stop stopping by and asking how it was going. After two
weeks, we compared our results and they matched. I tried not to make a big deal of it, but we never
really worked together after we presented those results at a conference.

Exercise 9.1 Go back through the analysis with index notation.

Now, write, using countless vector identities

⃗b ⋅
∫V

(
G∇2F⃗2 − F⃗2∇2G

)
=
∫S

[
⃗b(∇ ⋅ F⃗2) − (⃗b ⋅ ∇G)F⃗2 + ⃗b × (∇ × F⃗2)G − F⃗2 × (∇G × ⃗b)

]
⋅ n̂ds

and with even more vector identities

= ⃗b ⋅
∫S

[
(∇ × ⋅F⃗2)Gn̂ − (n̂ ⋅ F⃗2)∇G − n̂ × (∇ × F⃗2)G − (n̂ × F⃗2) × ∇G

]
ds (9.17)



9.1 Integral Equations 293

Since ⃗b is an arbitrary vector, we write

∫V

[
G∇2F⃗2 − F⃗2∇2G

]
d𝑣 =

∫S

[
(∇ ⋅ F⃗2)Gn̂ − (n̂ ⋅ F⃗2)∇G − n̂ × (∇ × F⃗2)G − (n̂ × F⃗2) × ∇G

]
ds

With (∇2 + k2)F⃗ = 0 and (∇2 + k2)⃗bG(r⃗, r⃗′) = −A⃗(r⃗′), we have

∫V
A⃗Gd𝑣 +

∫S

[
(∇ ⋅ F⃗Gn̂ − (n̂ ⋅ F⃗)∇G − n̂ × (∇ × F⃗)G − (n̂∇F⃗) × ∇G

]
ds =

{
F⃗(r⃗′) r⃗′ inside S
0 r⃗′ outside S

(9.18)

Usually F⃗ will be E⃗ or H⃗, so we need to know the source in V and the field E⃗ or H⃗ on the surface S
in order to find E⃗ or H⃗ at r⃗′.

So that was all preamble. Let’s go back to the notationally simpler acoustics problem and see a
bit more about how to use these equations. Then I’ll show you some results for electromagnetic
scattering from a cube and maybe spill a little more tea from back in the day.

Consider an acoustics scattering problem where there are two finite regions defined by surfaces
Si and S0 inside of which the fluid parameters may vary in an arbitrary way. Outside Si and S0, the
fluid parameters are constant. Assume that the source is inside Si while a (passive) scatterer with
differing material parameters is in S0.

In the integral equations that we derived a few pages ago, the surface SR doesn’t have to be simply
connected, so we take that to be Si, S0, and a sphere SR of radius R, which encloses Si and S0. The
volume V is exterior to Si and S0 but inside SR, as sketched in Figure 9.1. In the various integral
equations, the unit normal vector was always outward-pointing from V and we have to consider
n̂ = −n̂i and Si and n̂ = −n̂0 on S0. Since we have assumed that the only sources are in Si the volume
V is otherwise source-free and homogeneous. Thus our integral equation is

∫S=Si+S0+SR

[
G(r⃗, r⃗′)∇𝜙(r⃗) − 𝜙(r⃗)∇G(r⃗, r⃗′)

]
⋅ n̂ds = 𝜙(r⃗′) (9.19)

which allows us to calculate 𝜙(r⃗′) in V if we know 𝜙 at the surfaces Si, S0, and SR. With this, we
can write the “incident” pressure field as:

Figure 9.1 Source term is in the volume Vi while passive
scatterer is in volume V0. The surface SR contains the
spherical volume VR. SR

VR

R
Si

So
Vo

vi

n̂

n̂i

n̂o
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pinc(r⃗′) =
∫Si

[
G(r⃗, r⃗′)∇p(r⃗) − p(r⃗)∇G(r⃗, r⃗′)

]
⋅ n̂ds (9.20)

or, changing signs

pinc(r⃗′) =
∫Si

[
p(r⃗)∇G(r⃗, r⃗′) − G(r⃗, r⃗′)∇p(r⃗)

]
⋅ n̂ids (9.21)

It turns out that the fields tend to zero on the surface SR when R → ∞ since we require that the
radiation condition be satisfied. All we have left is

pS0 (r⃗′) =
∫S0

[
p(r⃗)∇G(r⃗, r⃗′) − G(r⃗, r⃗′)∇p(r⃗)

]
⋅ n̂ods (9.22)

and since p = pi + pS0 , we write

p(r⃗′) =
∫Si

[
p(r⃗)∇G(r⃗, r⃗′) − G(r⃗, r⃗′)∇p(r⃗)

]
⋅ n̂ids +

∫S0

[
p(r⃗)∇G(r⃗, r⃗′) − G(r⃗, r⃗′)∇p(r⃗)

]
⋅ n̂0ds

These equations don’t look too useful since the pressure we are after appears in every term. The
story gets a little better if we assume that pi is a known incident field, which we could pedantically
name pinc. Don’t judge. We’ve always assumed a form for the incident field. Quite often it was a
plane wave of unit amplitude. We didn’t actually work out any of those scattering cases, but it’s
often quite simple to have a point source instead of a plane wave for the incident wave, and then
any more complex incident field can be synthesized from a bunch of point sources. In any event,
we assume that pinc is known. We therefore write

p(r⃗′) = pinc + ∫S0

[
p(r⃗)∇G(r⃗, r⃗′) − G(r⃗, r⃗′)∇p(r⃗)

]
⋅ n̂ods (9.23)

and the second term we’ll call the scattered field. Thus, the total pressure is the incident field plus
the scattered field, and the scattered field is that part due to the presence of the region enclosed by
S0, which we call the scatterer.

OK fine, you might be saying. How do I use this? The first thing to do is to note that in acoustics,
for hard scatterers, the normal derivative of the pressure is zero at the surface and for soft scatterers,
the pressure is zero at the surface. I hope you see that in each these two cases one of the terms in
the integral over the surface of the scatterer is going to be zero. The next thing to remember is
that the whole point of this exercise was to come up with a formulation that could be handled
computationally because a hot minute ago we could only ever contemplate 2D discretizations. So,
approximate the integral over the surface of the scatterer as a summation and you might just have
yourself a matrix equation that you can numerically invert or whatever. There’s a huge literature
out there because it often requires quite a bit more mathematical gymnastics to get the equations
into a form that your measly computer can handle. But Moore’s Law means that computers get
better and faster and cheaper all the time, so it’s not even clear whether all this math is needed
anymore.

As I may have mentioned, I ended up doing radar scattering analysis entirely by accident. The
particular branch where the Air Force let me assign myself wasn’t expecting me and didn’t really
have anything for me to do. The senior researcher in the branch wasn’t all that interested in men-
toring young lieutenants, so even though my desk was next to his office, we didn’t work together
much. He had been a faculty member in Virginia for a short time, but apparently wasn’t interested
in teaching and mostly wanted to be left alone to do his integral equation research. He was pleas-
ant enough most days, but I figured out pretty early on that he was perhaps the most antimilitary
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Figure 9.2 Scattering cross section for a perfectly conducting cube with a perimeter 12𝜆 meaning that it’s
three wavelengths per side. The solid line is the integral equation solution, the dashed line is the high
frequency solution, and the dots are measured backscatter cross section.

person I had ever met and so the cognitive dissonance of drawing his paycheck from the Air Force
would build up until he needed to yell at someone. When that someone was the branch chief I could
hear the whole thing because of a common air vent. One time it was the directorate chief who got
yelled at in front of the entire directorate. That was a good lesson in civil service protections for
government employees for the young officers who would be punished severely by court martial or
whatever for insubordination directed toward a more senior officer.

In Figure 9.2 are shown some results for EM scattering from a perfectly conducting cube from [1].
The 1728 × 1728 complex matrix of integral equations took up to 117 iterations and 84 min of CPU
time on a Vax 8690 computer. The computer time became considerable for cubes much larger than
several wavelengths on a side. Interestingly, the three coauthors of this paper had quite distinct
roles in the work. The senior author2 wrote the equations, but didn’t do any programming. Indeed,
he didn’t even have a computer in 1988. The second author was a support services contractor who
did the computer programming and made the plots. The first author did the measurements in an
anechoic chamber radar scattering facility on a lovely seaside hill in Ipswich.

9.2 High Frequency Scattering and Diffraction Coefficients

You might wonder what became of radar scattering experts after the Cold War ended. One answer
is video games. The very same equations that were used to make better and better predictions of
the radar cross sections of airplanes, missiles and such, can be implemented to render better and
more realistic imaginary worlds. But first zombies.

2 Dr. Arthur Yaghjian is currently an independent consultant in electromagnetics. His research in electromagnetics
has led to the determination of electromagnetic fields in materials and “metamaterials”; the development of exact,
numerical, and high-frequency methods for predicting and measuring the near and far fields of antennas and
scatterers; the characterization and design of electrically small antennas and supergain arrays; and the
reformulation of the classical equations of motion of charged particles. Dr. Yaghjian received his BS, MS, and PhD
degrees in electrical engineering from Brown University in 1964, 1966, and 1969. After teaching mathematics and
physics at Hampton University, VA, in 1971, he joined the research staff of the Electromagnetics Division of the
National Institute of Standards and Technology (NIST), Boulder, CO. He transferred in 1983 to the Electromagnetics
Directorate of the Air Force Research Laboratory (AFRL), Hanscom AFB, MA, where he was employed as a
Research Scientist until 1996.
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I recently watched “Night of the Living Dead.” I have to say that it holds up pretty well. I paid
particular attention to the title scene and opening credits.3 The film inadvertently entered the public
domain in the United States because the distributor forgot to include the copyright symbol on the
prints of the movie. They had the required copyright notice on the title frames of the version with
the original title “Night of the Flesh Eaters,” but screwed up when they changed the title at the last
minute. One direct consequence of this screw up was that the movie was inexpensive to broadcast
on late-night TV and the concepts/content could be remixed endlessly without having to worry
about paying royalties or whatever.

The “uncanny valley” refers to the difficulty in faking realistic-looking simulations/animations of
humans. The current freakout is over deepfake videos where artificial intelligence is used to put my
face on Hermione Granger’s body and have me say things supporting the LGBTQ+ community that
J.K. Rowling never wrote. But for a long time, the technical issue has been trying to render humans
that don’t look just a bit (or quite a lot) off somehow. One reason for the popularity of zombies in
video games is they’re supposed to look just a bit off because they’re undead. A second reason for
the popularity of zombies in video games is that moms think they’re disgusting and so they’ll leave
you alone. A third reason for the popularity of these video games is that it’s OK to shoot zombies
because they’re already dead. But the main reason for the popularity of zombie video games is that
dark, dirty, dystopian vistas are computationally efficient to render. I’ll explain.

When the PC game “Rollercoaster Tycoon” introduced water features, every kid everywhere
crashed their computers. Water reflects light. All the light from all the sources of light and other
reflections of light and so on. All those many and various rays have to be traced to render the scene.
That’s not much of an issue if there isn’t much of anything that reflects light, but one too many
awesome water slides and your game crashes. Happy, shiny princess scenes will tax your computa-
tional resources. Dark, dingy postapocalyptic scenes don’t reflect much at all. Even zombie blood
isn’t shiny. Hence, zombie video games could be made much more realistic, which is ironic. Now
back to the Cold War.

The integral equation approach is classified as a low-frequency method, because the surface of
the scatterer was discretized, so the surface integral equation was approximated by a matrix sys-
tem to be inverted. Computational limitations restricted the “number of wavelengths across” the
scatterer and if the airplane or missile or whatever has to be only a few (or several) wavelengths in
size that is going to be a pretty low-frequency radar. The radar threat band of interest during the
height of the Cold War was 2–18 GHz. Do the math on what that means for the wavelengths and
you might even include that low frequency approaches are hopeless.

Let’s instead consider high-frequency EM scattering from perfectly conducting objects located
in isotropic, homogeneous media. That sounds rather restrictive, but remember the motivation is
to predict the radar cross section of airplanes and missiles and such. At radar frequencies, it’s an
excellent approximation to assume that aluminum is a perfect conductor. Maxwell’s equations give

∇2E⃗ + k2E⃗ = 0 ∇ ⋅ E⃗ = 0 (9.24)

where k = 𝜔

√
𝜇𝜖 and ei𝜔t time dependence is assumed. For large𝜔, the asymptotic high-frequency

solution to these equations is

3 Wikipedia sez: “Night of the Living Dead is a 1968 American independent horror film that introduced the
flesh-eating ghouls that would become synonymous with the term zombie. The story follows seven people trapped
in a farmhouse in rural Pennsylvania, under assault by reanimated corpses. The movie was directed, photographed,
and edited by George A. Romero, written by Romero and John Russo, and produced by Russell Streiner and Karl
Hardman. It stars Duane Jones and Judith O’Dea.”
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E⃗(R⃗, 𝜔) ∼ exp
[
−ik𝜓(R⃗)

] ∞∑
n=0

E⃗n(R⃗)
(i𝜔)n (9.25)

Since 𝜔 is large, we’ll retain only n = 0 to write

E⃗(R⃗, 𝜔) ∼ exp
[
−ik𝜓(R⃗)

]
E⃗0(R⃗) (9.26)

Note that ∇2 = ∇ ⋅ ∇ and ŝ = ∇𝜓 , which gives the eikonal equation|∇𝜓|2 = 1 (9.27)

together with the first-order transport and conditional equations

𝜕E⃗0

𝜕s
+ 1

2
(
∇2
𝜓

)
E⃗0 = 0 ŝ ⋅ E⃗0 = 0 (9.28)

The unit vector ŝ is in the direction of the ray path and s is the distance along the ray path from a
reference point O chosen for convenience. Integrating the transport equation gives

E(s) ∼ E(0)
(

𝜌1𝜌2

(𝜌1 + s)(𝜌2 + s)

)1∕2

e−iks (9.29)

where the field at the reference point s = 0 is

E(0) = E0(0)e−ik𝜓(0) (9.30)

Note also that 𝜌1 and 𝜌2 are the principal radii of curvature of the wavefront at s = 0. In addition,
please be aware that at s = −𝜌1 or s = −𝜌2, E(s) is infinite and thus our simple geometric optics
(GO) approximation breaks down. Because ŝ ⋅ E⃗0 = 0, the electric field in GO is perpendicular to
the ray path. From

∇ × E⃗ = −i𝜔𝜇H⃗

we can write the magnetic field as:

H⃗ ∼
√
𝜖

𝜇

ŝ × E⃗ (9.31)

Now consider scattering from the smooth, curved, perfectly reflecting surface shown in Figure 9.3.
We choose QR as the reference point, and ê⟂ is the unit vector perpendicular to the plane of inci-
dence, while êi

∥ and êr
∥ are the unit vectors parallel to the plane of incidence. The reflected field is

given by

E⃗
r
(0) = E⃗

i
(QR) ⋅ R = E⃗

i
(Qr) ⋅

[
êi
∥êr

∥ − êi
⟂êr

⟂

]
(9.32)

where the dyadic reflection coefficient is

R =
(

1 0
0 −1

)
We then write

E⃗
r
(s) = E⃗

i
(QR) ⋅ R

(
𝜌

r
1𝜌

r
2

(𝜌r
1 + s)(𝜌r

2 + 2)

)1∕2

e−iks (9.33)

where 𝜌r
1, 𝜌r

2 are the principal radii of curvature of the reflected wavefront at QR. We can write
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where

1
f1,2

= 1
cos 𝜃i

(
sin2
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+
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𝜃1
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)
±
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𝜃1
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+
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𝜃1
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)
− 4
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]1∕2

In this 𝜃1 and 𝜃2 are the angles between ŝi and the principal directions associated with the principal
radii of curvature R1, R2.

That was all pretty abstract, so consider that for plane wave incidence
√
𝜌

r
1𝜌

r
2 =

√
R1R2∕2 and for

an incident spherical wave 𝜌i
1 = 𝜌

i
2. Note that for a flat plate, a cylinder or a cone R1 or R2 is infinite

and this last simplification is invalid. I’m not sure that clarification really helped.
Geometrical optics (GO) gives the high-frequency scattered field via the law of reflection. To

make it better we could, in principle, include the n = 1, 2,… terms in the original high-frequency
solution to Maxwell’s equations. That turns out not to be a good approach to take. When we say
“high-frequency” what we really mean is there are lots of wavelengths across any scattering fea-
ture. That can’t ever be true for corners. This is a chapter about scattering from parallelepipeds
after all.

I feel like at this point that I should remind everybody that the goal of the work and the reason
it was being funded so lavishly back in the day was to be able to predict the radar cross section of
things like Figure 9.4. You might be amused to know that most of us doing radar scattering research
for the Air Force were unaware of the details of the F117 because classified information is always
tightly compartmentalized and you have to have both the appropriate level of security clearance
and a need to know. You don’t know what you don’t know because before you can know somebody
who already knows has to decide that you have a need to know and decide to read you into the
program. The stealth fighter program had the code name Have Blue. What little classified R&D we
did in our branch was under the code name Have Nots, a joke about how little funding we had. It

Surface

QR

θi

θr

n̂

êi
||

êr
||

ŝi

ŝr

Figure 9.3 Angle of reflection is equal to angle of incidence for a curved surface.
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(a) (b)

Figure 9.4 Front view of the F117 stealth fighter (a) from which you can see that there are lots of corners
and edges where simple GO approaches are going to break down. The facets will be fine, but corners and
edges will cause diffraction. Based on what it purported to be “inside” information, Testors released this
conceptual F-19 in 1986 (b). Garnering massive media attention, the design became the shape of the
mysterious Stealth Fighter in the public’s mind until the actual Stealth – the F-117 Nighthawk – was
unveiled in 1990. As it turned out, Testors’ sleek and low-profile Stealth looked not a thing like a highly
angular, faceted F-117 it was meant to portray. Source: U.S Air Force/Public Domain.

may also have been a bit of a joke, but Testors put out a stealth fighter model,4 which I may have
purchased at the mall, also shown in Figure 9.4

There are two primary defects of Geometrical Optics. First, the field is zero in the shadow
region. This isn’t true for the shadows due to sunlight that you’re used to, which actually is high
frequency. There’s no way such a simplification holds for radar, where the wavelengths are perhaps
a centimeter or even a bit larger. Second, GO assumes that the field is discontinuous at shadow
boundaries. You may have never looked closely at a shadow boundary. Do that sometime. Don’t
be self-conscious. Get down on your hands and knees and look closely. If you’re self-conscious
about it, casually toss a penny down so you can pick it up and pretend that it’s lucky. Losing an
earring is also a good excuse for looking closely at the ground, but when passersby try to help
you find your earring, their giant melon heads will block the sun, so go with the penny ruse
if you need to. What you’ll see is that the shadow boundary is a little fuzzy. That’s diffraction,
folks.

Joe Keller fixed the two primary defects of GO with his geometric theory of diffraction (GTD).
The scientific papers we’re talking about here are circa 1960, so we know that the work was
radar-motivated and so the wavelengths are relatively large and metals are perfectly conducting.
There are three Postulates of GTD:

1. Diffracted fields propagate along rays determined by a generalization of Fermat’s principle to
include points on the boundary surface in the ray trajectory.

2. Diffraction is a local phenomenon at high frequencies, depending only on the nature of
the boundary surface and the incident field in the immediate neighborhood of the point of
diffraction.

3. The diffracted field propagates along its ray so that (a) power is conserved in a tube and (b) the
phase delay along the path is the product of the wavenumber and the distance.

Since GTD includes diffracted fields, we can write

E⃗ = E⃗
GO

+ E⃗
D

It is important to note that the diffracted fields can’t be calculated with GO just by considering the
n = 1, 2,… terms since corners aren’t ever large WRT wavelength.

4 https://fantastic-plastic.com/lockheed-f-19-stealth-fighter-concept-by-testors.html.

https://fantastic-plastic.com/lockheed-f-19-stealth-fighter-concept-by-testors.html
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Figure 9.5 Opaque body with source at point 0 and observation at point P, where we have to account for
the direct ray i as well as the reflected ray r. There will also be an edge diffracted ray ed and a surface
diffracted ray sd. Also note that the shadow region is not dark and the shadow boundaries are not sharp. At
point P′ , there will be surface diffracted rays, as shown.

Consider the rays reflected and diffracted from an opaque body as sketched in Figure 9.5. The
source is at O and two field points, P in the lit region and P′ in the shadow region, are indicated.
Diffracted rays are initiated at points on the boundary surface where the GO field is discontinuous,
that is, at shadow or reflection boundaries. Since diffracted rays follow paths that minimize the
optical distance, they will be straight lines through space or geodesics along smooth surfaces. The
total field is the sum of all rays through a point. The good news is that the diffracted field looks
familiar

E⃗
d
(s) ∼ E⃗(0)

(
𝜌1𝜌2

(𝜌1 + s)(𝜌2 + s)

)1∕2

exp
[
−i(ks − l𝜋∕2)

]
(9.34)

where the reference point is the point of diffraction. The bad news is that we have to derive “dyadic
diffraction coefficients” for different cases, and there are lots of different cases. Of course, that bad
news turns out to be good news if you have in mind making a career out of this. Each of those dyadic
diffraction coefficients is a dissertation project for one of your PhD students and because the Cold
War means money is no object when the outcome of your work is better stealth aircraft for your
side and simultaneously better ways to detect the increasingly stealthy aircraft of the other side.
If the timing just happens to work out for you, you and your colleagues could spend your entire
professional lives cranking out more and more refined estimates of diffraction coefficients for all
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Figure 9.6 Diffraction at a curved edge. The
source is shown coming in from the right at an
angle 𝜙′ , with the ray directed at the sharp
edge at QE . Note the dashed line extending
that ray defines the shadow boundary. The
surface normal at the edge is indicated by n̂,
which defines the reflection boundary indicated
by a dashed line. The reflected ray at angle 𝜙 is
indicated.
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boundary

Reflectionboundary

QE

ϕ

ϕ'
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the geometries of interest.5 If the timing just happened to not work for yours truly, I could spend
a few years learning quite a bit about all of this just before the Cold War ended. COVID-19 wasn’t
the first lifequake.

This is all still rather abstract, so consider the specific case of diffraction from a curved edge,
with the incident ray striking obliquely, making an angle 𝛽′0 with the edge. Diffracted rays are on
the cone defined by 𝛽′0 but I find the 3D aspects confusing enough so consider the 2D geometry in
Figure 9.6.

The diffracted field is written

E⃗
d
(s) = E⃗

i
(QE) ⋅ D(𝜙, 𝜙′; 𝛽′0)

(
𝜌

s(𝜌 + s)

)1∕2

e−iks (9.35)

where

D(𝜙, 𝜙′; 𝛽′0) = −𝛽′0𝛽0Ds(𝜙, 𝜙′; 𝛽′0) − 𝜙̂
′
𝜙̂Dn(𝜙, 𝜙′; 𝛽′0)

The unit vectors 𝜙̂′ and 𝜙̂ are perpendicular to the edge-fixed planes of incidence and diffraction,
respectively. The unit vectors 𝛽′ and 𝛽0 are parallel to these planes:

𝛽

′
0 = ŝ′ × 𝜙̂′

𝛽0 = ŝ × 𝜙̂

Thus, the coordinates of the diffracted ray (s, 𝛽0, 𝜙) are spherical coordinates and so are the coordi-
nates of the incident ray (s′, 𝛽′0, 𝜙

′) except that the radial unit vector points toward the origin QE.
The quantities Ds and Dn are the scalar diffraction coefficients

Ds,n(𝜙, 𝜙′; 𝛽′0) =
e−i𝜋∕4 sin(𝜙∕n)
n(2𝜋k)1∕2 sin 𝛽′0

×
[

1
cos(𝜋∕n) − cos[(𝜙 − 𝜙′)∕n]

∓ 1
cos(𝜋∕n) − cos[(𝜙 + 𝜙′)∕n]

]
if the field point is not close to a shadow or reflection boundary and 𝜙′ ≠ 0 or n𝜋. The general
expression is more complicated. Other diffracting geometries are found separately. I typed
those last two sentences with a bit of a smirk on my face. I assume that you found this rather

5 Robert Kouyoumjian (1923–2011) was a professor of electrical engineering at Ohio State for over 40 years after
serving in World War II as a captain in the Air Force where he received training in meteorology. His main research
was conducted at the ElectroScience Laboratory; ESL included students who obtained over 300 PhD degrees and
500 MSc degrees. Prof. Kouyoumjian’s work included the development of accurate solutions for several canonical
wire and plate structures and studying the polarization properties of antennas and the study of thermal properties of
electromagnetic waves. His research was critical for future antenna and radar system design and analysis. In 1995,
he was inducted into the National Academy of Engineering for his work on Uniform Geometrical Theory of
Diffraction.
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Figure 9.7 Geometry for magnetic line current illuminating a truncated wedge of thickness 𝑤 and opening
angle of 30∘. Total field of a magnetic line current is sketched.

confusing. Most of the aforementioned mumbo-jumbo is just keeping track of the geometry
because the incident ray could be coming from pretty much any direction relative to the point
on the curved edge that we want to know the diffraction coefficient(s) for, and it’s inherently 3D
even though I declined to attempt a 2D rendition of that 3D geometry because I’m self-aware
enough to know that even if a diagram I drew for that made sense to me it would be rather
unlikely to resonate with you. Instead, I’ll show you a specific case and then a plot or two adapted
from [2].6

We’ll consider a 2D, 30∘ truncated wedge (Figure 9.7), which is𝑤 = 1.5𝜆 thick and is illuminated
by a magnetic current line source a distance of s′ = 3𝜆 from the vertex at an angle 𝜙′ = 30∘. Sorry
that it’s not a better diagram. You’re seeing the wedge from the side, which is sort of bluish, and
also a bit up from the bottom, which is the shaded triangular portion. Note that there are two
shadow boundaries because we’re accounting for the “doubly diffracted” fields. Don’t brainlock on
my inadequate diagram or the (still) rather confusing equations.

The incident magnetic field is

Hi = e−ik𝜌∕(k𝜌)1∕2 (9.36)

and the singly diffracted field is calculated from

Hd1 = e−iks′

(ks′)1∕2 Dn(𝜙, 𝜙′
, kL,n) e−iks

s1∕2 (9.37)

and the doubly diffracted field is

Hd2 = e−iks′

(ks′)1∕2 Dn(𝜙, 𝜙′
, kL,n) e−ik𝑤

𝑤
1∕2

1
2

Dn(𝜙1, 𝜙
′
1, kL1,n1)

e−iks1

s1∕2
1

(9.38)

6 Vasundara Venkatraman Varadan studied physics at the University of Kerala and earned her bachelor’s degree in
1967. Her sisters studied physics and business. She remained there for her graduate studies and completed her
master’s degree in 1969. She moved to the University of Illinois for her doctorate, which she defended in 1974. In
1974, Varadan joined Cornell University, where she worked on wave propagation and materials science. She moved
to Ohio State University in 1977, where she was an associate professor in wave physics and composite materials. She
served on the faculty at Pennsylvania State University for over 20 years, working as codirector of the Center for
Electronic Engineering. She was promoted to professor in 1986. In 2002, Varadan was made National Science
Foundation Division Director of Electrical & Communications Systems. She moved to the University of Arkansas in
2005, where she served as the Billingsley Chair and distinguished professor, now emerita.
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Figure 9.8 The radar cross sections of simple shapes in the high-frequency approximation are well known.
This is a slide from a famous set of lectures by Prof. Allen E. Fuhs of the Naval Postgraduate School. Source:
Adapted from [3].

The total field then can be computed, as sketched in Figure 9.7.
In Figure 9.8, I’ve included Viewgraph 6 of [3], which I have a paperback copy of, but you

should be able to find online. Most of the lectures you’ve been to during your lifetime were prob-
ably PowerPoint. Some professors still write on the whiteboard during class and think it’s some
sort of multi-media extravaganza if they use different colors of dry-erase markers. Some profes-
sors know which classrooms on campus still have excellent slate chalkboards and will try to get
their department administrators to assign them those rooms. Such dinosaurs have a cache of col-
ored chalk for when they want to get really fancy, and may comment that their colleagues who
have professional-looking PowerPoints are probably just using the slide deck that came with the
instructor’s version of the textbook. I may be a little salty about all of this, because I remember
the days when hand-drawn viewgraphs were perfectly acceptable at a scientific conference or a
graduate-level lecture on something highly mathematical like electromagnetic scattering. Back in
those days, in order to get fancy viewgraphs, you had to send your hand-drawn draft “slide deck”
to the Photo Shop on base and they would make your slides for you. Professors couldn’t afford that,
unless they had won a Nobel Prize (Figure 9.9). Prof. Fuhs includes the following bullet points to
go along with Viewgraph 6, RCS for Simple Shapes:

● The direction of the incident wave is specified by ⃗k, which is usually parallel to an axis for the
simple cases considered here.

● The equations are valid only in optical region where ka ≫ 1.
● The cone and paraboloid extend to infinity. 𝜎 is due to scattering at the tip for a cone and blunt

nose for a paraboloid.
● Compare the RCS for a sphere and a paraboloid. What do you notice?
● The prolate (cigar-shaped) ellipsoid of revolution has an RCS less than a sphere of radius b.

Rewrite formula for 𝜎 as 𝜎 = (𝜋b2)(b∕a)2 = (RCS OF SPHERE OF RADIUS b)(b∕a)2 As ratio
b∕a decreases, the radius of curvature at the nose decreases; 𝜎 decreases. Interpret the result in
terms of 𝜎 = 𝜌1𝜌2.
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Figure 9.9 My advisor, Asim Yildiz (right) talking with his advisor, Julian Schwinger. The envelope in
Schwinger’s lap is likely his vugraphs.

● The circular ogive is tangent to a cylinder. The cylinder must tend to infinity. Note RCS is less for
a cone than for an ogive with the same angle, 𝛿. RCS is due to scattering by the tip.

In Figure 9.10 which I’ve adapted from Viewgraph 15 of [3], it’s shown when polarization matters
to the radar cross sections of wires, rods, cylinders, and discs. The phase space shown here has size
parameter ka for the horizontal axis and length (thickness) compared to wavelength L∕𝜆 for the
vertical axis. The long wire has large L∕𝜆 and small ka and the radar cross section depends strongly
on polarization:

𝜎∥ =
𝜋L2

(𝜙∕2)2 +
[
ln(𝜆∕1.78𝜋a)

]2

𝜎⟂ = 9
4
𝜋L2(ka)4

The short rod has small L∕𝜆 and ka, so polarization isn’t important in the shaded gray area near the
origin. The radar cross section is given by 𝜎 ∼ L2(ka)4. The finite cylinder of radius a and height
L, where both L∕𝜆 and ka are large, is in the other regime where polarization isn’t important. The
radar cross section is 𝜎 = kaL2. For the disc of radius a and thickness L which has large ka but small
L∕𝜆, polarization is important when illuminated edge on:

𝜎∥∕𝜋a2
< −40 db 𝜎⟂ ≃ a

k
I don’t know if it was obvious to you that the cone in Figure 9.8 was infinite. In the equations

leading up to Figure 9.7, there was a double-dyadic diffraction coefficient or some such thing, which
you probably skipped over because the geometry and math and such are rather confusing. That
second diffraction coefficient referred to the diffracted rays from the top edge of the wedge which
travel down the side to the bottom edge and diffract from that even though that bottom edge isn’t
illuminated by the source. That’s why there was a second shadow boundary. I know. It’s confusing,
and again my apologies for my inadequate 2D diagram.
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Figure 9.10 The RCS of wires, rods, cylinders, and discs depend on ka and the ratio of length (thickness) to
wavelength L∕𝜆. I’ve drawn this from Viewgraph 15 of [3]. Squares showing the wavelength 𝜆 are indicated
by each of the shapes. The L∕𝜆-ka plane has been divided into three regions. In the upper right where
L∕𝜆 ≫ 1 and ka ≫ 1, the polarization of the wave is not important. In the corner near the origin (shaded),
where L = a and ka ≪ 1, polarization is not important. In between these two regions, polarization is
important and one needs both 𝜎∥ and 𝜎⟂ to be complete. Source: [3]/AIAA American Institute of Aeronautics
and Astronautics/Public Domain.

Let me paint you a word picture for a finite cone, rather than trying to PowerPoint one for
you. There will be diffraction from the tip of the cone, which makes good sense, I suppose.
But if the cone is finite, there will be rays which are diffracted from the tip and travel along
the cone surface and then when they get to the back edge of the cone, they will diffract
from that. So, you need one diffraction coefficient for the tip, and a second one for the
tip-to-base diffraction. As your aircraft get stealthier and stealthier, you might just need to
incorporate more and more of these things in order to match up your models with measure-
ments. You and your PhD students could keep coming up with new diffraction coefficients
forever!

One or both of two things might happen to ruin that gravy train. One is that the Cold
War might end. The other is that we might start making our stealth aircraft primarily out
of advanced composite materials rather than aluminum. Both happened. Composite mate-
rials, like graphite-epoxy, are not perfect conductors. Indeed, Boeing uses quite a lot of
graphite-epoxy in the primary structure of their passenger jets these days, and so they have
to embed wire mesh in them to protect against lightning strikes. The B2 Stealth Bomber is
a smoothly-shaped flying wing, which also uses quite a lot of advanced composite materials.
The F117 Stealth Fighter was primarily aluminum, and you can assume that its faceted shape
was decided upon based on the limited ability to predict radar cross section with Keller’s
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Figure 9.11 Creeping waves are generated at the shadow boundary for any rays, which are tangential to
the surface there. Creeping waves are associated with currents on the body in the shadow region, and
emerge at the opposite shadow boundary.

physical theory of diffraction7 [4] and subsequent improvements, like the uniform theory of
diffraction [5].

Figure 9.11 shows a wavefront incident on a smooth body, which is adapted from Viewgraph
24 in the No See Um Book. Although creeping waves usually yield smaller RCS than specular
reflections, one of the first design changes made in the design of stealthier aircraft was to try to
minimize the effects of specular reflections. They can’t be done away with, of course, but they
can be controlled. Indeed, the design philosophy of the faceted F117 was to have the specular
reflections all go in just a few directions, none of which were the backscattering direction. It’s
not your imagination, the various facets do line up in a few directions. In principle only the cor-
ner and edge diffractions contribute much to the RCS, and those can be modeled with a small
number of painfully derived diffraction coefficients. Creeping waves are important for smooth
blunt bodies such as spheres, cylinders, ellipsoids, and orange VW Beetles with pumpkin stems
(Figure 1.17).

7 Joseph Keller was considered by many the Dean of Applied Mathematics. He was best known for his Geometrical
Theory of Diffraction, a method for describing the propagation, scattering and diffraction of waves, especially as
they bend around the edges and corners of an obstacle. The theory, developed while he was on the faculty at New
York University, built on work he had done during and after World War II using sonar to determine the presence
and location of submarines and underwater mines. The theory can be applied whether the waves are acoustic,
electromagnetic, elastic, or fluid, and has become an indispensable tool for engineers and scientists working on
applications such as radar, stealth technology, and antenna design. His intellectual curiosity and humor were
recognized in two Ig Nobel Prizes for “research that makes you laugh and then makes you think.” The first of these,
in 1999, honored his work explaining why teapots dribble and how to avoid it. The second, in 2012, recognized his
discussion of the physical forces that make a jogger’s ponytail swing horizontally even though the jogger is
oscillating vertically. He died at age 93 in 2016.
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Figure 9.12 Creeping waves will scatter from any discontinuity of surface-topography or material.

For long thin bodies such as wires, prolate ellipsoids, and ogives near head-on incidence, traveling
waves will be excited that scatter from the back end. Bodies with dielectrics favor the excitation
of traveling waves. In Figure 1.21, I sketched traveling waves diffracting from the aft of a Volvo
240 station wagon. In Figure 1.20, I indicated a variety of different scattering centers on a generic
airplane. In Figure 9.12, I’ve drawn a generic surface and note that creeping waves will diffract
from any gap, surface-slope discontinuity, or change in materials. We now know that part of the
final preparations for flight in the F117 was taping over and/or filling in as many gaps in the surface
one the pilots were in and the plane ready to take off. The reason we know that is the materials were
toxic when burned and after landing they were removed and burned in an open pit where workers
breathed the secretly hazardous smoke from burning the secret materials of aircraft that the Air
Force didn’t acknowledge publicly they had at a base in the desert they denied even existed. Lots
of secret things still go on at Groom Lake, but it shows up on Google Earth, so there’s no denying it
exists.8 When the Cold War ended and all those young PhDs who had become experts in calculating
dyadic diffraction coefficients had to find something else to do, at least some of them went into video
games. Accounting for diffraction and then secondary diffraction and so forth and so on is what
you need to do to make video games look realistic. The mathematical machinery and expertise that
kept careful track of all the rays which originate at a light source anywhere in the scene and then
reflect, refract, diffract, etc. before contributing to the total field at any other point anywhere in the
scene, turned out to be just what was needed to render increasingly realistic scenes. Video games
have gotten realistic enough by now that oldsters sometimes think they’re watching a movie rather
than a game their grandson is playing. Worlds don’t have to be dark and dystopian anymore. They
can be bright and shiny and happy, if your GPUs can handle all those extra rays. At some point
along the way, games could even include princesses with blonde hair. That was a real milestone

8 I’m skeptical that there are crashed flying saucers there because if there were I think we’d all have flying cars by
now. In addition, Kenneth Arnold didn’t say that the UFOs he saw in 1947 were saucer shaped, he said they moved
like saucers skipping over water. Some reporter got that a bit wrong and that’s why people think UFOs are flying
saucers. Oh, and the Roswell Crash was a Project Mogul balloon. The scattered balloon wreckage seemed odd in
1947 because Mylar was an unfamiliar material, and they had used some decorative tape to reinforce the balsa wood
structure. The UFO cover story that was issued and then retracted was designed to keep the Ruskies from realizing
that we had microphones and whatnot floating high up in the atmosphere listening for nuclear bomb tests. The
Roswell mystery has persisted primarily in order to facilitate tourism. Why else, if not for Nessie, would anyone go
on holiday at Loch Ness? Same for Roswell, NM.



308 9 Scattering from Parallelepipeds

because to make blonde hair look bright and shiny, you have to accurately account for some of
the light reflecting from the hair (strand) and some going through it. It’s an electromagnetic wave
scattering from a dielectric cylinder problem.

One final application of this sort of analysis. The same sorts of people who think there are aliens
and flying saucers at Area 51 also claim that the Apollo moon landing was faked. We didn’t have
the technology to fake that in 1969.9 “Look at the shadows in the footage. If the light source were a
nearby spotlight, the shadows would originate from a central point. But because the source is so far
away, the shadows are parallel in most places rather than diverging from a single point. That said,
the sun isn’t the only source of illumination – light is reflected from the ground too. That can cause
some shadows to not appear parallel. It also means we can see objects that are in the shadow.”
Analysis of the various light rays, including reflection and diffraction is key to debunking this sort
of conspiracy. In addition, I tease my friends at NASA that if we are getting our advanced aerospace
technology by reverse-engineering crashed flying saucers, it follows logically that NASA is a front
organization designed to hide that. They never think this is a funny joke. It’s a little funny.

Here’s something that’s not even a little bit funny. Those of us who write scattering equations and
whatnot for a living10 don’t expect to be at the center of this kind of real-life drama.11 Generally
speaking, when we’re asked by our significant others what we did at work that day, honey, the
answer isn’t interesting to narrate as my wife can attest.

Exercise 9.2 Is there a well-developed version of GTD but for underwater sound, that is, sonar?
Do the wavelengths for sonar allow us to make high-frequency assumptions like in radar? Are there
creeping waves and traveling waves on submarines that re-radiate into the shadow zone?

In the aforementioned discussion about creeping waves and traveling waves and corner diffrac-
tion and such, I presume that you remembered that there was a whole chapter on guided waves. In

9 https://www.pbs.org/newshour/science/apollo-landing-footage-would-have-been-impossible-to-fake-a-film-
expert-explains-why.
10 Professor Ajit Mal received his PhD in Applied Mathematics/Mechanics from Calcutta University in 1964, did
postdoctoral research at UCLA and UC Berkeley during 1964–1966, and joined the faculty at UCLA as an Assistant
Professor of Engineering in 1967. He became a full professor in 1974. His research interest is in the general area of
mechanics of solids with specialization in wave propagation. He has made major research contributions in
scattering and diffraction of elastic waves from inclusions, cracks, and corners; strong earthquake ground motion;
micromechanical theories of wave propagation in fiber-reinforced composites; quantitative NDE of composites, thin
films and bonded joints; and characterization of materials degradation due to corrosion and fatigue in structural
components.
11 “Mainak Sarkar did not impress in class: UCLA Indian-origin professor” Times of India (5 June 2016) LOS
ANGELES: An Indian-American professor has said Mainak Sarkar, who was behind the UCLA murder-suicide, left
little impression as a student in his class and never used to greet him when they passed each other despite both
hailing from West Bengal. Professor Ajit Mal was in his University of California, Los Angeles, office on Wednesday
getting ready to teach his engineering class when IIT-Kharagpur alumni Mainak Sarkar shot and killed 39-year-old
professor William Klug, who he had accused of stealing his computer code and giving it to someone else.

Mal praised another UCLA professor Christopher Lynch for his quick action that kept the 38-year-old UCLA
gunman from escaping and potentially shooting more people. Both Mal and Lynch were quoted by the Los Angeles
Times as saying that Sarkar’s allegation that Klug had stolen his computer code was groundless.

Lynch said all UCLA employees and graduate students sign over any intellectual property developed there to the
university and, if it is subsequently licensed, enter royalty agreements to share in the profits. Both men said that
Sarkar had enrolled in their classes several years earlier but left little impression. Mal said Sarkar was quiet and
reserved and would not even greet him when the two men passed each other, which the professor found somewhat
odd since both hail from West Bengal and speak the same language. He also said it was likely that Klug never knew
of Sarkar’s animosity toward him. If he had, Mal said, Klug would probably have consulted him for his Indian
cultural insights and years of experience.

https://www.pbs.org/newshour/science/apollo-landing-footage-would-have-been-impossible-to-fake-a-film-expert-explains-why
https://www.pbs.org/newshour/science/apollo-landing-footage-would-have-been-impossible-to-fake-a-film-expert-explains-why
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particular, we considered Rayleigh waves in some detail and discussed their usefulness in acous-
tic microscopy at very high (for acoustics) frequencies. You may even have gotten a little excited
about a straightforward-but-tedious method to model Rayleigh wave diffraction at cracks and other
near-surface discontinuities. Recall that in the simplest possible situation, where a Rayleigh wave,
which is incident on the edge of a quarter space, it will reflect and transmit Rayleigh waves, but will
also scatter bulk L and SV waves. If that quarterspace was immersed in a liquid, such as water used
for coupling in high-frequency ultrasound, the surface waves would be leaking sound waves into
the fluid as they propagate. Whether there’s any GTD-type diffraction at the corner is a question
that’s probably best answered by doing an FDTD simulation. I wouldn’t expect any such diffrac-
tion to be a significant effect, but then the whole point of GTD in radar applications was to quantify
increasingly small contributions to the radar cross section as the dominant ones were systematically
eliminated.

A general groundwork for 3D GTD applied to ultrasonic detection of idealized cracks in solids
was developed in the late 1970s. It’s a lot more complicated than the corresponding radar problem
because the diffracted waves will be both longitudinal and shear bulk waves in addition to Rayleigh
waves propagating along each face of the crack. The diffracted bulk waves will have characteristic
cones with half angles determined by Snell’s law of edge diffraction. It’s a bit unwieldy, frankly. A
heroic effort, though [6] Prof. Achenbach.12

Instead, consider two adjoining quarterspaces as shown in Figure 9.13, where Rayleigh waves will
be reflected and transmitted, as will both L and T waves in each of the quarter spaces. There might
also be guided waves that travel down the interface between the two quarterspaces. Of course,
if there was coupling liquid there would be longitudinal waves leaking up into that fluid at the
critical angle and presumably some diffracted acoustic waves which may or may not be useful for
nondestructive evaluation.
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Figure 9.13 A Rayleigh wave incident on the boundary of two adjoining quarterspaces will reflect and
transmit Rayleigh waves, but there will also be scattered transmitted L and T waves (a). Very similar
behavior is exhibited by plasmonic polaritons (b) where a thin conducting layer, perhaps of graphene, is
atop dielectric layers. The guided wave in the conducting layer is evanescent in both the dielectrics 𝜖1, 𝜖2,
and free space 𝜖0 with reflected and transmitted fields shown at the boundary between the two dielectric
slabs as both guided waves and scattered bulk waves that are likely mid-IR/THz for graphene plasmonics.

12 Jan Drewes Achenbach was born in the northern region of the Netherlands. He studied aeronautics at Delft
University of Technology and then earned a PhD at Stanford in 1962. After a year as a preceptor at Columbia he was
appointed assistant professor at Northwestern. Prof. Achenbach and his students developed methods for flaw
detection and characterization by using contact transducers and laser-based ultrasonics, and also methods for
thin-layer characterization by acoustic microscopy. His work was both analytical and experimental in nature, with
extensive cooperation with other universities and industry via the Center for Quality Engineering and Failure
Prevention, which he founded. The Walter P. Murphy Professor and Distinguished McCormick School Professor,
emeritus, he died in 2020.
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But now look at Figure 9.13b where a rather similar problem is sketched that will yank us right
back to the modern day. There is a class of important optics problems, which might just allow us
to apply our building knowledge of surface waves and diffraction and such. The magic word of
the day is plasmonics. But first13 let’s go back to some simple reflection and refraction problems in
electromagnetics.

In 1609, a fleet of ships was on its way to the fledgling Jamestowne Colony (where things weren’t
going especially well) when they got caught in a hurricane [7]. NASA hadn’t launched any weather
satellites quite yet, so the tempest caught them by surprise. The lead ship, Sea Venture, was very
close to sinking but miraculously got wedged in a small gap in the dangerous reefs that surround
the island of Bermuda. Everybody was able to get ashore, and they were able to salvage their
soggy supplies and all usable ship fittings. Nobody lived on the island because the reefs made
it too dangerous to try to go there, but Spaniards had left some hogs there back in the day, so
there’d be plenty of food for any subsequent castaways. The island was also full of delicious birds
that were so docile you could walk right up to them and club them to get a snack; those birds
screeched like the devil, which is how the island became known as Devil’s Island. This is the
literal Bermuda Triangle origin story, BTW. It’s also the inspiration for Shakespeare’s last play, The
Tempest.

The Sea Venture castaways were stranded in Bermuda for about ten months. Some wanted
to stay there. Some wanted to go back to England. The Virginia Company executives insisted
that everybody pitch in to build two small ships and finish the trip to Jamestowne, where
they showed up in 1610 just after The Starving Time. It didn’t smell great. Sir Thomas Gates
took over as Governor until Lord De La Warr and his resupply fleet arrived a few months
later.

I’ve traced the genealogy and Dr. William P. Winfree of NASA Langley Research Center in Hamp-
ton, VA seems to be a direct descendant of Sir Thomas Gates. When Hurricane Katrina was bearing
down on New Orleans in 2005, Bill Winfree saw it coming thanks to weather satellites. He was at
the Michoud Assembly Facility in the eastern section of New Orleans, which is surrounded by
water on all sides. He caught the last flight out before the tempest hit.

The critical work being done by Dr. Winfree and his team at Machoud was inspecting the orange
foam that covered the Space Shuttle external fuel tank for flaws, including disbonds. That foam is
the consistency of a Styrofoam cup, and when Columbia launched in 2003, a piece of foam fell off
and impacted the carbon–carbon leading edge of the Shuttle’s wing. Upon reentry, that un-noticed
flaw in the wing allowed 2400∘F plasma to get inside the wing and melt the aluminum structure.

None of the standard NDE technologies were suitable for inspecting the foam. An emerging
technology that exploited the heretofore unavailable TeraHertz part of the electromagnetic spec-
trum, was being brought to bear to ensure that the Space Shuttle could be returned to flight safely.
T-ray scanners can now be small enough to fit on a desktop, and they have enabled widespread
terahertz use in medical, corporate, manufacturing, and security settings across the world, with
more developments to come,14 but in those days the only industrial use of T-ray scanning was for

13 A google search for “What is Plasmonics in simple terms?” gives: Plasmonics (or nanoplasmonics) is a young
topic of research, which is part of nanophotonics and nano-optics. Plasmonics concerns the investigation of electron
oscillations in metallic nanostructures and nanoparticles (NPs). Surface plasmons have optical properties, which are
very interesting. Similarly, “Is graphene a plasmonic material?” gives: With relatively low loss, high confinement,
flexible feature, and good tunability, graphene can be a promising plasmonic material alternative to the noble
metals.
14 https://venturebeat.com/datadecisionmakers/t-ray-technology-is-moving-from-sci-fi-to-mainstream. These
days you can buy a T-Ray imaging system from Luna Innovations, Inc., which can measure thickness down to 50μm
at a rate of 1000 measurements per second without nuclear or ionizing radiation.

https://venturebeat.com/datadecisionmakers/t-ray-technology-is-moving-from-sci-fi-to-mainstream


9.3 Reflection/Transmission by a Slab 311

cigarette paper inspection at Philip Morris in Richmond. The THz range lies right at the intersec-
tion of what was historically possible with electronics and optics – slightly too high in frequency for
conventional electronics to reach, and too low in frequency for optical approaches to be effective.
Maxwell’s equations work from DC to light, so modeling T-ray inspections is pretty straightforward.
The wavelength is high enough to resolve the sorts of thin discontinuities of interest in ensuring
homogenous, well-bonded foam. The primary technical challenge is that the external fuel tanks
are enormous so both scanning and data analysis can take quite some time.

9.3 Reflection/Transmission by a Slab

Reflection and transmission by a planar slab are problems of considerable practical interest in
optics, radar, wireless communications, etc. For such a simple geometry, there’s a surprising
amount of complexity, especially once we let the material properties be complex and frequency
dependent. Consider three arbitrary homogeneous media characterized by the wave numbers
k1, k2, k3, where k = 𝜔

√
𝜇𝜖 as usual. Since electromagnetic waves are transverse and the directions

of propagation are normal to the interfaces, we don’t have to concern ourselves with a vector
formulation of the problem. The boundary conditions of continuity of tangential electric and
magnetic fields at z = 0 and z = d need simply the field components that we will have by assuming

Einc = E0eik1z−i𝜔t Hinc =
k1

𝜔𝜇1
Einc

Eref = E1e−ik1z−i𝜔t Href =
−k1

𝜔𝜇1
Eref

Eslab =
(

E(+)eik2z + E(−)e−ik2z) e−i𝜔t Hslab =
k2

𝜔𝜇2

(
E(+)eik2z + E(−)e−ik2z) (9.39)

Etran = E3eik2z−i𝜔t Htran =
k3

𝜔𝜇3
Etran

It’s convenient both in terms of simplifying the expressions and emphasizing the important phys-
ical quantities to introduce the impedance Z =

√
𝜇∕𝜖 and since k = 𝜔

√
𝜇𝜖 and so we have k

𝜔𝜇

= 1
Z

and here we go. The boundary conditions are continuity of the E- and H-fields at z = 0

E0 + E1 = E(+)
2 + E(−)

2 (9.40)

E0 − E1 =
Z1

Z2

(
E(+)

2 − E(−)
2

)
and also at z = d

E(+)
2 eik2d + E(−)

2 e−ik2d = E3eik3d (9.41)

E(+)
2 eik2d − E(−)

2 e−ik2d =
Z2

Z3

(
E3eik3d)

which can be solved for the reflection and transmission coefficients

R =
E1

E0
=

(
1 − Z1∕Z2

) (
1 + Z2∕Z3

)
+
(
1 + Z1∕Z2

) (
1 − Z2∕Z3

)
e2ik2d(

1 + Z1∕Z2
) (

1 + Z2∕Z3
)
+
(
1 − Z1∕Z2

) (
1 − Z2∕Z3

)
e2ik2d

T =
E3

E0
= 4e−ik3d(

1 + Z1∕Z2
) (

1 + Z2∕Z3
)
+
(
1 − Z1∕Z2

) (
1 − Z2∕Z3

)
e2ik2d
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Exercise 9.3 Check my algebra. Twice. I could have made a mistake when I did it, or I could have
typed something wrong. I’ve been following Stratton15 (1941) and he could have had a typo, since
things were heating up at the Rad Lab right about then. When you’re confident in the expressions
for the reflection and transmission coefficients, choose some materials and make some plots like
Figure 9.14. But first, look at the structure of the expressions because making plots takes time and

(k1)

Ei, Hi Em, Hm Et, Ht

z = 0 z = d

Er, Hr

(k2)

λ
8

λ
4

1

2

3

λ
2

3λ
8

5λ
8

(k3)

80

70

60

50

40

R
 (

%
)

d

30

20

10

Figure 9.14 Plane wave reflection and
transmission by a slab of thickness d. Percentage
reflection for: (1) 𝜖2∕𝜖1 = 2, (2) 𝜖2∕𝜖1 = 4, (1)
𝜖2∕𝜖1 = 9 plotted as a function of the slab
thickness, d. Note the minimum at one
quarter-wavelength thickness in the slab and
maximum at half-wavelength thickness in the
slab. I’ve mimicked Figure 97 in Stratton here, but
you should be able to make many such plots quite
easily.

15 Born in Seattle, WA on 18 May 1901, Julius A. Stratton attended the University of Washington for one year until
he went to M.I.T. to obtain his bachelor’s degree in 1923 and master’s degree in 1925. He then did graduate study in
Grenoble and Toulouse, France, and the Technische Hochschule of Zurich, Switzerland, awarded him the degree of
Doctor of Science in 1927. Stratton joined the staff of M.I.T. in 1928 and served in the electrical engineering and
physics departments for 20 years. In 1945, he was appointed Director of the Research Laboratory of Electronics, was
named Provost of M.I.T. in 1949, and in 1951 he became vice-president as well. In 1956, he was named to the newly
created post of Chancellor, acted as deputy to the president, and served as general executive officer. Dr. Stratton was
president of MIT from 1959–1966 and chairman of the board of the Ford Foundation from 1966 to 1971. During
World War II he served as Expert Consultant in the Office of the Secretary of War, and was awarded its Medal for
Merit in 1946. The Radiation Laboratory demonstrated impressively the value of interdisciplinary research and, as
the end of the war neared, Dr. Stratton and others sought a way in which its momentum and program methods
could be sustained for peacetime research. The Research Laboratory of Electronics provided a pattern for
interdisciplinarity, and its example was followed at other institutions. Dr. Stratton was a Life Trustee and Member of
the Corporation of the Boston Museum of Science, and championed the importance of science at all levels of
education and the need for humanistic studies in undergraduate scientific and engineering curricula. He died at the
age of 93.
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effort. It sure did in 1941. It still did in 1991. Note that the impedances always show up in ratios,
which are dimensionless. Note that the thickness shows up everywhere as k2d in the reflection
coefficient, which is also dimensionless and gets the name electrical thickness. Hence, plot R vs.
k2d for a bunch of different values of relative impedance ratios.

A common simplification to this problem is to consider k1 = k3 and then of course Z1 = Z3, which
simply means that the media on either side of the slab is the same. Maybe the slab is a window and
by adjusting the properties of the glass you tune the amount of light that gets transmitted or what
pretty colors the transmitted light makes. Careful, though, if some impurity in the glass accidentally
makes it turn pale purple and you sold that batch of glass to make windows for fancy-schmancy
houses on Beacon Hill in Boston, then everybody is going to want some of that suddenly fashionable
purple window glass of just the right tint and you could easily go bankrupt trying to reproduce
it. Take the Duck Boat or Beantown Trolley tour in Boston and they’ll point out a few panes of
that glass across from the Common. It turns out that the colors of stained glass are due to the
finite conductivity of metallic particles added to molten glass which ends up giving a frequency
dependence to k2 and Z2. Gustav Mie found that he couldn’t explain these physical phenomena
without finite conductivity of the spherical scatterers in his model.

Exercise 9.4 These days plasmonics folks allude to stained glass because surface plasmon polari-
tons can be generated in spherical particles. Does that mean that G. Mie was doing plasmonics more
than 100 years ago? Can we finally explain the pale purple Beacon Hill windowpanes?

Another application of this is understanding why you get no cell phone reception in some build-
ings. Now we’re talking RF frequencies instead of optical wavelengths, but remember that we’ve
got things parameterized according to dimensionless electrical thickness, k2d. You should be able
to look up what frequencies your phone is using and the properties of typical building materials
and estimate the thickness of walls and such. Make some plots. Then investigate a bit what’s differ-
ent for 5G wireless compared to 4G. As cell phones move up to mm-wave frequencies, there will be
more issues associated with larger electrical thicknesses of walls. If you do get a 5G signal, you’ll
be able to stream better, though.

A different special case is when medium 3 is a perfect reflector, which is pretty much the sit-
uation for metals in the microwave regime. Radar absorbing materials are sometimes applied to
metallic structures in order to make them stealthy. Medium 1 can be plain old air. Medium 2 will
be some fancy RAM with complex permeability and permittivity, 𝜇2 = 𝜇

′
2 + i𝜇′′

2 and 𝜖2 = 𝜖
′
2 + i𝜖′′2 .

Introducing conductivity means that k2
3 = 𝜔

2
𝜖3𝜇3 + i𝜔𝜎3𝜇3 and if we let 𝜎3 → ∞, the transmission

coefficient should vanish. Do that limit carefully and see what you get, paying attention also to the
Z2∕Z3 terms. Compare the behavior of your simpler expressions with what you get by using large,
but finite, conductivity in the full expressions. If things are behaving strangely, go back through
the above analysis, but with the second set of boundary conditions reduced to enforcing tangential
electric field zero at z = d.

E(+)
2 eik2d + E(−)

2 e−ik2d = 0 (9.42)

So, with this important knowledge, what sort of material could you apply to a moving target to
minimize the reflection from a stationary radar operating in X- and Ka-bands? Is that something
that a civilian could buy? Would it survive the car wash?
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9.4 Reflection at Conducting Halfspace

Following the notation of Stratton (1941), we consider the reflection and refraction of a plane elec-
tromagnetic wave at the boundary between two halfspaces. Note in Figure 9.15 that the boundary
is x = 0 and the incident, reflected, and transmitted waves are in the xz-plane. We first consider the
TE case where the x and z components of the electric fields are zero. We thus write

Einc
y = E0eik2(−x cos 𝜃0+z sin 𝜃0)

Etran
y = E1eik1(−x cos 𝜃1+z sin 𝜃1) (9.43)

Erefl
y = E2eik2(x cos 𝜃2+z sin 𝜃2)

Since Hx = 1
i𝜔𝜇

𝜕Ey

𝜕z
, Hy = 0 and Hz =

−1
i𝜔𝜇

𝜕Ey

𝜕x
we also have

Hinc
z =

k2 cos 𝜃0

𝜔𝜇2
E0eik2(−x cos 𝜃0+z sin 𝜃0)

Htran
z =

k1 cos 𝜃1

𝜔𝜇1
E1eik1(−x cos 𝜃1+z sin 𝜃1) (9.44)

Hrefl
z =

−k2 cos 𝜃2

𝜔𝜇2
E2eik2(x cos 𝜃2+z sin 𝜃2)

Boundary conditions are continuity of tangential electric and magnetic fields at x = 0 for all values
of z

Hinc
z + Hrefl

z = Htran
z Einc

y + Erefl
y = Etran

y (9.45)

which give
k2 cos 𝜃0

𝜇2
E0eik2z sin 𝜃0 −

k2 cos 𝜃2

𝜇2
E2eik2z sin 𝜃2 =

k1 cos 𝜃1

𝜇1
E1eik1z sin 𝜃1 (9.46)

and

E0eik2z sin 𝜃0 + E1eik2z sin 𝜃2 = E1eik1z sin 𝜃1 (9.47)
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Figure 9.15 Incident TE plane wave reflection and refraction at a halfspace.
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Because these must hold for all values of z, we conclude that

k2 sin 𝜃0 = k2 sin 𝜃2 = k1 sin 𝜃1 (9.48)

so the boundary condition equations become

cos 𝜃0E0 − cos 𝜃2E1 =
k1

k2

𝜇2

𝜇1
cos 𝜃1E1 (9.49)

and

E0 + E2 = E1 (9.50)

These two equations can be solved to give the transmission and reflection coefficients

T =
E1

E0
=

2 𝜇1
𝜇2

cos 𝜃0

𝜇1
𝜇2

cos 𝜃0 +
√(

k1
k2

)2
− sin2

𝜃0

(9.51)

R =
E2

E0
=

𝜇1
𝜇2

cos 𝜃0 −
√(

k1
k2

)2
− sin2

𝜃0

𝜇1
𝜇2

cos 𝜃0 +
√(

k1
k2

)2
− sin2

𝜃0

(9.52)

Exercise 9.5 Pick some materials and plot R and T as a function of the angle of incidence. Note
that you’ll need 𝜇 and 𝜖 for both materials, but the way that we’ve written things, you won’t have
to worry about units if you use material parameters relative to free space. Note that nonmagnetic
materials have a relative permeability of 1.

Things get slightly more interesting if medium 2 is a dielectric but medium 1 is a conductor, in
which case

k2
1 = 𝜔

2
𝜖1𝜇1 + i𝜔𝜎1𝜇1 k1 = 𝛼1 + i𝛽1

k2
2 = 𝜔

2
𝜖2𝜇2 k2 = 𝛼2 = 𝜔

√
𝜖2𝜇2

so that k1 is complex and depends on frequency in perhaps a rather complicated way. Considering
the transmission coefficient for the simple case of nonmagnetic materials where 𝜇1 = 𝜇2 = 1, we
still have the factor of k1∕k2 under the square root in the denominator. In addition, it’s important
to note that we have

Etran
y = E1ei(𝛼1+i𝛽1)(−x cos 𝜃1+z sin 𝜃1) (9.53)

where 𝛼1 and 𝛽1 are the real and imaginary parts of k1 that you get to work out as an exercise. When
you do that algebra, it will be necessary to invoke a constraint on 𝛽 to avoid nonphysical results.
In particular, the sign of 𝛽 has to result in a transmitted wave that is finite for large negative val-
ues of x and large positive values of z. Think about it. We have an incident plane wave as well as
a reflected plane wave in medium 2. If medium 1 is a perfect conductor, then all of the energy is
reflected and the reflected wave is the same amplitude and angle as the incident wave. If medium
1 is a dielectric or an imperfect conductor, then some fraction of the energy ends up in the trans-
mitted wave. For the imperfect conductor, energy will be lost in that medium due to dissipation, so
as z gets large, the transmitted wave has to tend to zero, or at least it would if we weren’t talking
about an infinite time-harmonic plane wave. It’s also apparent that as negative-x gets large, the
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Figure 9.16 Incident TM plane wave reflection and refraction at a halfspace.

transmitted wave has to go to zero. According to my quick bit of algebra, this means we need to
have 𝛽 be positive, but do check that yourself and see what that means in terms of actual material
properties of actual materials. In terms of wave propagation, it means that the transmitted wave
might be what we call a surface wave. Check the relative magnitudes of 𝛼 and 𝛽 for some conduc-
tors and some frequencies to get a feel for what’s happening. In addition, note that the reflection
coefficient depends on the ratio of k1 to k2 in a quite complicated manner, so I wonder if there are
some combinations of incident angle, frequency, and/or material parameter(s), where funny things
happen to the reflected wave?

Now consider again the reflection and refraction of a plane electromagnetic wave at the boundary
between two halfspaces. Note in Figure 9.16 that the boundary is x = 0 and the incident, reflected,
and transmitted waves are in the xy-plane as before, but for the TM case, the x and z components
of the magnetic fields are zero. We thus write

Hinc
y = H0eik2(−x cos 𝜃0+z sin 𝜃0)

Htran
y = H1eik1(−x cos 𝜃1+z sin 𝜃1) (9.54)

Hrefl
y = H2eik2(x cos 𝜃2+z sin 𝜃2)

Since Ez =
−1

i𝜔𝜖(𝜔)
𝜕Hy

𝜕z
, Ey = 0 and Ez =

1
i𝜔𝜖(𝜔)

𝜕Hy

𝜕x
, we also have

Einc
z =

𝜔𝜇2 cos 𝜃0

k2
H0eik2(−x cos 𝜃0+ z sin 𝜃0)

Etran
z =

−𝜔𝜇1 cos 𝜃1

k1
H1eik1(−x cos 𝜃1+ z sin 𝜃1) (9.55)

Erefl
z =

𝜔𝜇2 cos 𝜃2

k2
H2eik2(x cos 𝜃2+ z sin 𝜃2)

Note that we’ve explicitly written 𝜖(𝜔) to remind ourselves that conductivity makes permittivity
complex and frequency dependent. We can still utilize k2 = 𝜔

2
𝜖𝜇 as long as we keep this in mind.
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Boundary conditions are again continuity of tangential electric and magnetic fields at x = 0 for all
values of z

Hinc
z + Hrefl

z = Htran
z Einc

y + Erefl
y = Etran

y (9.56)

which give
−𝜔𝜇2 cos 𝜃0

k2
H0eik2z sin 𝜃0 +

𝜔𝜇2 cos 𝜃2

k2
H2eik2z sin 𝜃2 =

−𝜔𝜇1 cos 𝜃1

k1
H1eik1z sin 𝜃1 (9.57)

and

H0eik2z sin 𝜃0 + H1eik2z sin 𝜃2 = H1eik1z sin 𝜃1 (9.58)

Because these must hold for all values of z, we conclude that

k2 sin 𝜃0 = k2 sin 𝜃2 = k1 sin 𝜃1 (9.59)

so the boundary condition equations become

cos 𝜃0H0 − cos𝜃2H1 =
𝜇1

𝜇2

k2

k1
cos 𝜃1H1 (9.60)

and

H0 + H2 = H1 (9.61)

These two equations can be solved to give the transmission and reflection coefficients

T =
H1

H0
=

2 cos 𝜃0

cos 𝜃0 +
𝜇1
𝜇2

√(
k2
k1

)2
− sin2

𝜃0

(9.62)

R =
H2

H0
=

cos 𝜃0 −
𝜇1
𝜇2

√(
k2
k1

)2
− sin2

𝜃0

cos 𝜃0 +
𝜇1
𝜇2

√(
k2
k1

)2
− sin2

𝜃0

(9.63)

Pick some materials and plot R and T as a function of the angle of incidence. Note again that you’ll
need 𝜇 and 𝜖 for both materials, but the way that we’ve written things, you won’t have to worry
about units if you use material parameters relative to free space. Note that nonmagnetic materials
have a relative permeability of 1, and for conductors k = 𝜔

√
𝜇𝜖(𝜔), where 𝜖(𝜔) = 𝜖 − 𝜎∕i𝜔.

9.5 Surface Plasmon Polaritons

Maxwell’s equations are valid over an amazing space of frequencies, from DC to light, as they say.16

Nano-optics is using light to investigate nanomaterials or nanoscale features in things. Plasmonics
is a name for this interaction of light with materials. A quick bit of Googling will confirm that this is
a rather hot topic these days. It also seems to be a new and exciting application of electromagnetic

16 Jin Au Kong was a 74th-generation lineal descendant of Confucius. At MIT, where he started as an assistant
professor in 1969, and later Zhejiang University, Prof. Kong supervised about 50 PhD theses and 90 Master theses.
Kong was also the founding chair of the Progress In Electromagnetics Research Symposium (PIERS), and the author
of the excellent book “Electromagnetic Wave Theory” published in several editions until his death in 2008. PIERS is
now the PhotonIcs and Electromagnetics Research Symposium, which provides a forum for reporting recent
advances in electromagnetics, photonics, and applications.
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scattering, which means that people like us should probably pay attention to it. If someone ever
asks you whether you know something about any subject, you should resist the temptation to reply
that that’s not what you do. Instead, you should respond that you know a bit about that or ask them
to tell you a bit more. Often what you want to do is stall for time so you can look into the subject
a bit. An excellent response is, “Let’s talk next week sometime.” Between now and next week, you
should be able to come up to speed. You don’t need a comprehensive literature review; you just
need a toe hold to get started. Here are some papers that I found that seem to indicate to me that
we can contribute to plasmonics via our knowledge of scattering [8–23]. I’m not pretending that
this is anything approaching a proper review of the literature, of course, because this field is moving
rather fast. Reading several of these papers and looking at the papers they reference gives a sense
of where the literature is, and what keywords to search for. Use Google Scholar. Sort by date. Focus
on review articles. In a few days, you should be able to come up to speed and understand how the
kind of scattering analysis you know how to do relates to this literature.

Exercise 9.6 Consider how to model surface plasmon polaritons scattering from a hole and
whether an eigenfunction solution approach can be used. You’ll have to click through to their
supplementary material in [19] to see the cylindrical-hole, guided-wave scattering analysis.

With that as preamble, let’s consider a semi-infinite metal slab characterized by a complex,
frequency-dependent permittivity 𝜖r = 𝜖(𝜔) for z < 0 with some superstrate material of dielectric
constant 𝜖sup for z > 0. We’re going to write solutions for surface waves traveling along the interface
z = 0, but first let’s take a step back and consider Maxwell’s equations for a system containing no
naturally magnetic components

𝜖0
𝜕E⃗
𝜕t

= ∇ × H⃗ − 𝜕P⃗
𝜕t

𝜇0
𝜕H⃗
𝜕t

= −∇ × E⃗ (9.64)

where for many ordinary dielectric media P⃗ = 𝜖0𝜒rE⃗ and if we write 𝜖r = 1 + 𝜒r we have, in
frequency domain

−i𝜔𝜖r(𝜔)𝜖0E⃗(𝜔) = ∇ × H⃗(𝜔)
−i𝜔𝜇0H⃗(𝜔) = −∇ × E⃗(𝜔) (9.65)

which can be combined to give

∇ × ∇ × E⃗(𝜔) − 𝜖r(𝜔)
(
𝜔

c

)2
E⃗(𝜔) = 0

where we have used c = 𝜔

√
𝜇0𝜖0 and of course the relative permeability of nonmagnetic materials

is just 1. In addition, since ∇ ⋅ E⃗ = 0 we can write this as:

∇2E⃗ + k(𝜔)2E⃗ = 0 (9.66)

For plasmonic materials, the complex, frequency-dependent permeability 𝜖(𝜔) is what gives rise
to the physical behavior we’re interested in. Looking back through the derivation we just did, this
could mean that 𝜒r is frequency dependent and complex, or maybe plain old conductivity is where
some or all of that comes from.

You can verify that a solution of Maxwell’s equations is

E⃗(𝜔) = A
(

x̂ −
kx

kz
ẑ
)

exp[i(kzz + kxx)] (9.67)
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with

kx(𝜔) =
𝜔

c

√
𝜖sup𝜖(𝜔)
𝜖sup + 𝜖(𝜔)

and

kz(𝜔) =
𝜔

c

√
𝜖sup

𝜖sup + 𝜖(𝜔)
z > 0

kz(𝜔) =
𝜔

c

√
𝜖(𝜔)

𝜖sup + 𝜖(𝜔)
z < 0

Surface plasmon polaritons arise from the peculiar optical properties of metals in certain spectral
regimes, where 𝜖(𝜔) has a negative real part and a positive imaginary part, which makes kx(𝜔) and
kz(𝜔) complex, but we care about the particular situation where kx is real and positive while kz
is imaginary. This gives a wave mode that is propagating in the x-direction but whose amplitude
decays exponentially away from the interface z = 0, which is what we call a surface wave. What’s
most interesting about these surface plasmon polariton waves is that when they hit a discontinu-
ity in either topography or material properties, they will scatter. Some of that energy will be into
reflected/refracted/diffracted surface wave modes, but some of it will also be in propagating wave
modes that diffract up into the dielectric superstrate.

Now consider a metal halfspace characterized by a real dielectric function 𝜖(𝜔) in the region z < 0
where z > 0 is vacuum, except that there is a 2D surface defect described by 𝜁(x) that is assumed to
be differentiable and nonzero only over a finite portion of the x-axis near the origin. 𝜁(x) might be
described as an indentation or an excrescence.

A surface plasmon polariton of frequency 𝜔 propagates in the +x-direction and scatters from the
nonzero part of 𝜁(x), so we can write the total magnetic field above 𝜁(x) as the incident plus the
scattered fields, where the former is written such that it is a propagating wave in the x-direction
but evanescent in the z-direction, while the latter is written as a superposition of plane waves. The
field below 𝜁(x) we can similarly write as an incident plus transmitted fields. What we’re really
going to say, mathematically, is that we know the magnetic fields in the dielectric and the metal
are predominantly propagating surface waves whose amplitudes fall off exponentially away from
the surface, but there are also fields diffracted by the local surface irregularity. We’ll call those
diffracted fields the scattered and transmitted fields and we’ll solve for them using the boundary
conditions, Figure 9.17.

φinc

ζ(x)

x

Hinc

z

Figure 9.17 Incident TE plane wave reflection and diffraction by a defect.
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Rather than just writing it all down and proceeding, it’s probably helpful to take a step back and
do the little derivation that is usually omitted.

Consider the Green’s function for the scalar Helmholtz equation(
∇2 + K2)G = 𝛿(R) R = r − r′ (9.68)

If we Fourier transform with the kernel ∇2 → −p2 we have
(

K2 − p2) ̃G = 1 so that ̃G = 1
K2−p2 and

we then inverse Fourier transform to get

G = 1
(2𝜋)3 ∫ ∫ ∫

d3p eip⃗⋅R⃗

K2 − p2 (9.69)

The Weyl formula gives the Green’s function representation in the form of a superposition of plane
waves propagating upward at z > 0 and downward at z < 0, which is what we need for this scatter-
ing problem. Since the essence of the Green’s function method of solution is that we can convolve
the source function with the Green’s function solution to get the physical field of interest, we write

H =
∫

∞

−∞ ∫

∞

−∞ ∫

∞

−∞
d3pH0

eip⃗⋅r⃗

K2 − p2 (9.70)

and then evaluate the pz integral by the method of residues.

H =
∫

∞

−∞ ∫

∞

−∞
dpxdpy ∫

∞

−∞
dpzH0

eip⃗⋅r⃗

K2 − p2 (9.71)

where p⃗ ⋅ r⃗ = pxx + pyy + pzz. Hence, we have an integral of the form

I =
∫

∞

−∞
dpzH0

eipzz

p2
z − 𝛾2

where 𝛾2 = K2 − p2
x − p2

y so in the complex px-plane, there are simple poles at pz = ±𝛾 and the
residue is ei𝛾z∕2𝛾 . So we have

I ∝ H0
ei𝛾z

𝛾

(9.72)

and we’ll chose the sign in 𝛾 = ±
√

K2 − p2
x − p2

y to match the physical situation we’re modeling.
Putting the pieces back together, we can write

H2D ∝
∫

∞

−∞ ∫

∞

−∞
dpxdpy

(
H0∕𝛾

)
eipxxeipyye−𝛾z (9.73)

In the case of a two-dimensional flaw and perpendicular incidence, the coordinate system can be
arranged so there is no variation with respect to y and this reduces to

H1D ∝
∫

∞

−∞
dpx

(
H0∕𝛾

)
eipxxe−𝛾z (9.74)

with 𝛾 = ±
√

p2
x − K2.

We can conclude that the magnetic field is Hy ∝ eikxxe−𝛽z, where we’ve written kz = i𝛽 since we
want kx to be real and kz to be imaginary for surface plasmon polaritons. We can use this functional
form together with H1D to write

H(sup) = eikxxe−𝛽0z +
∫

∞

−∞
dpx (R∕𝛾) eipxxe−𝛾z (9.75)

H(met) = eikxxe−𝛽1z +
∫

∞

−∞
dpx (T∕𝛾) eipxxe−𝛾z (9.76)
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where we could just as easily have folded a factor of 1∕𝛾 into the definitions of R and T because those
are the unknowns that we want to solve for using the boundary conditions of continuous tangential
electric and magnetic fields at the interface z = 𝜁(x). Continuity of the tangential electric field is
written

𝜕

𝜕n
H(sup) = 1

𝜖(𝜔)
𝜕

𝜕n
H(met) (9.77)

where

𝜕

𝜕n
= 1√

1 + (𝜁 ′(x))2

(
−𝜁 ′(x) 𝜕

𝜕x
+ 𝜕

𝜕z

)
and 𝜁 ′(x) is the slope of the surface function, that is, its first derivative.

∫

∞

−∞
dpxR(px|k(𝜔))eipxx−𝛽1(px ,𝜔)𝜁 (x) −

∫

∞

−∞
dpxT(px|k(𝜔))eipxx+𝛽2(px ,𝜔)𝜁 (x)

= −eik(𝜔)x−𝛽1(𝜔)𝜁 (x) + eik(𝜔)x+𝛽2(𝜔)𝜁 (x) (9.78)

∫

∞

−∞
dpxR(px|k(𝜔)) [−ipx𝜁

′(x) − 𝛽1(px)
]

eipxx−𝛽1(px ,𝜔)𝜁 (x)

− 1
𝜖(𝜔) ∫

∞

−∞
dpxT(px|k(𝜔)) [−ipx𝜁

′(x) + 𝛽2(px)
]

eipxx+𝛽2(px ,𝜔)𝜁 (x)

= −
[
−ipx𝜁

′(x) − 𝛽1(px)
]

eik(𝜔)x−𝛽1(𝜔)𝜁 (x)

+ 1
𝜖(𝜔)

[
−ipx𝜁

′(x) + 𝛽2(px)
]

eik(𝜔)x+𝛽2(𝜔)𝜁 (x) (9.79)

In principle, we now have two equations that can be solved for the two unknown functions, once the
surface profile is specified. In practice, we’re only ever going to need R because that’s what would be
measured optically as light diffracted when the surface plasmon polariton scattered from the local-
ized surface irregularity. So now what? Well, one approach could be to try some functional forms
of 𝜁(x) to see if there are any that simplify the equations somehow. Go ahead and try it. Good luck
with that. The more fruitful approach seems to be manipulating the pair of already complex bound-
ary condition integral equations to eliminate T and get a single somewhat more complex integral
equation containing only R that can then be evaluated numerically. That might mean that people
who know how to solve integral equations to calculate the RCS of a small metal cube can dust off
their old FORTRAN codes and update their LinkedIn profiles to include the keyword plasmonics.
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10

Inverse Scattering

My group is pushing hard into the Internet of Things (IoT) right now. The sorts of low-power sen-
sor hubs that are in wearables have an amazing amount of capability, both in terms of sensors
and local processing of sensor data which enables what’s starting to be called distributed machine
learning. For the last 30 years, my students and I have been modeling the scattering of radar, sonar,
and ultrasound waves from objects, tissues, materials, and structures. The reflection, transmission,
refraction and diffraction of light, and the conduction of heat, are also included in this body of
work. As computers have become more and more capable, three-dimensional simulations of these
interactions have become a key aspect of sorting out very complex behaviors. Typically, our goal has
been to solve inverse problems where we know what the excitation source is, and some response
of the system is measured. Success is being able to automatically and in (near) real time deduce
the state of the object(s), tissue(s), material(s) and/or structure(s). We, of course, want quantitative
outputs with a resolution appropriate for each particular use case. I assume that you’ve noticed that
the mathematical modeling techniques and numerical simulation methods are the same across a
wide range of physical situations and fields of application. Why the sky is blue and how to make a
bomber stealthy both utilize Maxwell’s equations. Seismic waves and ultrasonic NDE employ iden-
tical equations once feature sizes are normalized by wavelength. Sonar of whales and submarines
is identical to that of echolocating bats and obstacle avoiding robots. We have centrally supported
HPC capabilities here in the Integrated Science Center1 with PhD-level sysadmins down the hall
from my office who are charged with helping students get their codes up and running in parallel.
We don’t charge internal users for computing time or expert help. I should note that these days my
students all do theory and experiments and high-performance computing.

The question is whether a dramatic proliferation of IoT and edge computing will finally enable
inverse scattering as imagined conceptually in Figure 10.1. The basic idea is that if we know the
source and then measure the scattered field on some surrounding surface, we’ll be able to use for-
mal mathematical methods to determine the characteristics of the scatterer. Tomography seemed
to be one path toward inverse scattering, although to make it work, we had to have many sources
and for each innumerable receivers. In most cases, though, what people actually mean by inverse
scattering is a source and a few receivers. Since I’m an engineer and not a mathematician, I feel that
it’s my duty to point out that if you go looking for a unicorn, you’re likely to have to settle for a
rhinoceros and to save face, you’ll try to convince everybody that the unicorn is just a little chubby,
but with diet and exercise and several more years of research… Woody might even conclude that
what you call flying is merely falling with style.

1 https://www.youtube.com/watch?v=aX-gIqG8HWk.

A Data Engineering Approach to Wave Scattering Analysis: with Applications in Radar, Sonar, Medical Diagnostics,
Structural Flaw Detection and Intelligent Robotics, First Edition. Mark K.
© 2025 The Institute of Electrical and Electronics Engineers, Inc.

https://www.youtube.com/watch?v=aX-gIqG8HWk
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Spherical surface goes to

infinity and beyond
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Figure 10.1 For inverse scattering, we know the source and measure the scattered field on some
surrounding surface. The goal is to determine the location, orientation, size, shape, materials, etc. of the
scatterer(s). IoT seems to mean that we can have enough sensors within that spherical surface that we can
imagine solving inverse problems. The data engineering challenge is always going to be deciding what
features to extract from the sensor data streams.

In general, inverse scattering problems are too hard, but bats do avoid obstacles and find food.
Radar detects inbound threats and remotely estimates precipitation. Cars park themselves and
(usually) stop before impact, even if the human driver is not paying close attention. Medical
imaging is now so good that we find ourselves in the midst of an overdiagnosis dilemma.
Computed tomography is familiar to most people from X-ray CT scanners used in medicine
and baggage screening. In a different configuration, CT is a workhorse method for seismic
wave exploration for natural resources. We adapted these methods for ultrasound-guided-wave
characterization of flaws in large engineered structures like aircraft and pipelines. By extracting
features from signals that have gone through the region of interest in many directions, the
reconstruction algorithms output a map of the quantities of interest, for example, tissue density
or pipe wall thickness. The key is understanding which features to extract from the signals
for use in tomographic reconstruction, but that understanding comes from an analysis of the
signal energy interacting with the tissue, structure or material variations that matter, which is
scattering.

For many years now, we’ve been developing the underlying physics to enable robots to navi-
gate the world around them. We tend to focus on those sensors and imagers where the physics is
interesting, and then develop the machine learning algorithms to allow a robot to autonomously
interpret its sensors and imagers. For autonomous vehicles, we now say IoV instead of IoT, and
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there the focus is sensors/interpretation, but also communication among vehicles, which is how
an autonomous vehicle sees around corners and such.

Machine learning is the modern lingo for what we’ve always been trying to do, and lately, I’ve
been having my graduate students take formal CS coursework in machine learning during their first
semester. Sometimes we call it pattern classification, but the key issue is determining what’s what
from measured data streams. Machine learning is usually divided into supervised and unsupervised
learning. Supervised learning requires training data with known class labels, and unless one has
a sufficient amount of relevant training data these methods will return erroneous classifications.
Unsupervised learning can reveal structures and interrelations in data with no class labels required
for the data. It can be used as a precursor for supervised learning, but can also uncover the hidden
thematic structure in collections of documents, phone conversations, emails, chats, photos, videos,
etc. This is important because more than 90% of all data in the digital universe is unstructured.
Most people have an idea that every customer-service phone call is now monitored, but that doesn’t
mean that a supervisor is listening in; it means that computers are hoovering up everything and
analyzing the conversations. Latent topics are those unknown unknowns in unstructured data,
and contain the most challenging insights for humans to uncover. Topic modeling can be used
as a part of the human–machine teaming capability that leverages both the machine’s strengths to
reveal structures and interrelationships, and the human’s strengths to identify patterns and critique
solutions using prior experiences. Listening to calls and/or reading documents will always be the
limiting factors if we depend on humans with human attention spans, but topic modeling allows
the machines to plow through seemingly impossible amounts of data to uncover the unknown
unknowns that could lead to actionable insights.2 That ancillary information can be exploited to
better interpret scattering patterns from radar, sonar, etc. Human operators3 have always done this,
but now machine learning holds the promise of doing it better, faster, and cheaper.

I’ve watched as the hardware to acquire, digest and share sensor data plummeted from US $104

to US $101 and that logarithmic trend-line seems to be extending. Music and video streaming
on-demand are the norm, even in stadiums where people have paid real money to experience live
entertainment. Battery fires are what make the news, but my new smoke detector lasts a decade
without needing new batteries. Even radar has gotten small enough to put on a COTS drone,
and not just a little coffee can radar but a real phased array radar using meta-materials to sweep
the beam in two directions with an antenna-lens combination about the size and weight of an
iPad and at a cost already an order of magnitude lower than before. For this drone radar to be
able to sense-and-avoid properly, though, the algorithms are going to need to improve because
small drones operate in a cluttered environment. This explains why Echodyne’s output looks a
lot like B-mode ultrasound.4 While it’s true that power lines and barbed-wire fences look pretty
similar to a radar, the fence will always have bushes, trees, cows, etc. that will backscatter at
least as much. This clutter problem is also a key issue for autonomous ground robots because

2 Dr. William L. Fehlman II is a Data Scientist at USAA, after retiring as a Lieutenant Colonel having served
24 years in the US Army. Bill holds an MS degree in Applied Mathematics from RPI and a PhD in Applied Science
from W&M. He is the inventor of US Patent 10,444,945 involving a Natural Language Processing innovation. He
built and directed the first ever Data Science practice at USAA that supports Contact Center Operations and was
Principal Investigator of artificial intelligence and autonomous unmanned systems projects at NASA.
3 It used to be that data wasn’t actually recorded in many situations. For example, NDT inspectors would assess the
signals in real time and either accept or reject the part based on their expert judgment of the absence or presence of
flaws. “Stamping off” was the fraudulent practice of pretending a part had been inspected when it had not, and then
marking it as having passed and then doctoring the paperwork. See, for example: Norwood, D. (2022). Diary of An
Aerospace Whitsleblower. https://www.amazon.com/gp/product/B0BMT22RXW.
4 https://www.echodyne.com.

https://www.amazon.com/gp/product/B0BMT22RXW
https://www.echodyne.com
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there’s no clear distinction between targets and clutter and some would say pedestrians are
neither.

In current commercial work on the development of 5G wireless, one of the most widely consid-
ered options is the mmWave because the high frequency (3–300 GHz) spectrum is plentiful and
lightly licensed. However, there remain unanswered technical questions about this largely unex-
plored spectrum. The fundamental properties of the mmWave channel differ from current cellular
models in that RF interaction with the environment is strongly frequency dependent in this band.
As we’ve seen, scattering and diffraction are controlled primarily by object size compared to wave-
length, and changing the frequency just a bit can alter the character of the scattering dramatically.
Material properties (complex permittivity and permeability) are frequency dependent, and spread
spectrum signals will need to consider this via scattering/diffraction models and numerical simu-
lations of RF interactions.

Data engineering is necessary for this sort of work, both because the signals are quite complex and
because covering large areas or volumes with a minimum number of sensors means propagation
distances are going to be large and the “fingerprint” of the scattering will usually be quite sub-
tle. Because scattering is frequency dependent, the most promising signal processing approaches
include joint time-frequency and time-scale methods.

A 2D color image time-frequency representation (TFR) typically has time delay on the horizontal
axis and frequency on the vertical axis. The simplest way to form a spectrogram is via a boxcar
FFT, where an FFT is performed inside of a sliding window to give the spectrum at a sequence of
time delays. Boxcar FFT is almost never the optimal TFR, however, since it suffers rather badly
from an uncertainty effect. Making the time window a lot shorter to better localize the frequency
content in time usually means there often aren’t enough sample points to accurately form the FFT.
Lengthening the window to get a more accurate spectrum doesn’t solve the problem, since then
the time localization is imprecise. Alternative TFRs have been developed to overcome many of the
deficiencies of the traditional spectrogram, and since our probing signals are typically finite pulses,
pings, etc. it is natural to explore TFRs that use basis functions with compact support.

Wavelets are very useful for analyzing time series data because the wavelet transform allows us
to keep track of both time and frequency, or scale, features. Whereas Fourier transforms break
down a signal into a series of sines and cosines in order to identify the frequency content of the
entire signal, wavelet transforms keep track of local frequency features in the time domain. In 2002,
we developed a tool that rendered the time series data in 2D time-scale binary images. Since then
we’ve applied this technique to multimode extraction of Lamb wave signals for tomographic recon-
struction, time domain reflectometry (TDR) signals wiring flaw detection, acoustic microscopy, an
ultrasonographic periodontal probing device, 5G wireless, and so on. Our preferred method, which
we call dynamic wavelet fingerprints, is discussed briefly later. Here’s the TL; DR: It’s important to
intelligently downselect the features you’re going to be using for machine learning.5

You’d be within your rights to argue that this isn’t really a chapter about inverse scattering. That’s
true in the way that term is typically used, of course, but the traditional methods of inverse scat-
tering haven’t really worked out very well. I suppose you could argue that tomography is a way to
do inverse scattering and I’d have to agree with you that that has been rather successful in various
applications with various sorts of interrogation energy. We certainly had quite a lot of fun devel-
oping Lamb wave tomography, and the particular data engineering techniques we developed in
order to make that work started us down the path to what we now know to call machine learning.

5 See Hinders, M.K. (2020). Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet
Fingerprint, 346 pp. Springer Nature. https://www.springer.com/us/book/9783030493943.

https://www.springer.com/us/book/9783030493943
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That even turns out to be why I stand by calling this a chapter about inverse scattering. Machine
learning holds the promise of using measurements and models of forward scattering processes to
actually do inverse scattering out in the real world. With IoT sensors, though, we come back to what
is to be done with the signals that are recorded and then what features are going to be extracted
from signals to feed into a machine learning system. As you’ll see later, I almost called this a chapter
about wavelets.

Wavelets6 are often ideally suited to analyzing nonstationary signals, especially since there are a
wide variety of mother wavelets that can be evaluated to find those that most parsimoniously repre-
sent a given class of signals. The wavelet transform coefficients can be rendered in an image similar
to a spectrogram, except that the vertical axis will now be “wavelet scale” instead of frequency. The
horizontal axis will still be time delay because the “wavelet shift” corresponds to that directly. Nev-
ertheless, these somewhat abstract time-scale images can be quite helpful for identifying subtle
signal features that may not be resolvable via other TFR methods.

The continuous wavelet transform (CWT) of a square-integrable, continuous function s(t) can be
written

C(a, b) =
∫

+∞

−∞
𝜓

∗
a,b(t)s(t)dt (10.1)

where 𝜓(t) is the mother wavelet, ∗ denotes the complex conjugate, and 𝜓a,b(t) is given by

𝜓a,b(t) = |a|−p
𝜓

(
t − b

a

)
(10.2)

Here, the constants a, b ∈ ℝ, where a is a scaling parameter with p ≥ 0, and b is a translation param-
eter related to the time localization of 𝜓 . The choice of p is dependent only upon which source is
being referred to, much like the different conventions for the Fourier transform, so we choose the
most common value of p = 1∕2. The mother wavelet can be any square-integrable function of finite
energy, and is often chosen based on its similarity to the inherent structure of the signal(s) being
analyzed. The scale parameter a relates to different frequency components of the signal. Small
values of a give a compressed mother wavelet, which will emphasize the signal’s high-frequency
components. Large values of a result in stretched mother wavelets, returning approximations of
the signal related to low-frequency aspects.

10.1 Wavelet Fingerprinting

Once a raw signal has been filtered, we then pass it through the DWFP algorithm. Originally devel-
oped by Jidong Hou,7 the DWFP applies a wavelet transform on the original time domain data,

6 Ingrid Daubechies is the Meryl Streep of mathematics, according to the NY Times:https://www.nytimes.com/
2021/09/14/magazine/ingrid-daubechies.html You should get yourself a copy of her classic book, “Ten lectures on
wavelets.” Daubechies, Ingrid. Society for industrial and applied mathematics, 1992. Currently, the James B. Duke
Distinguished Professor of Mathematics and Electrical and Computer Engineering at Duke, her work “is of
tremendous importance in image compression, medical imaging, remote sensing, and digital photography” and
therefore she was awarded the 2023 Wolf Prize in Mathematics for her work in wavelet theory and applied harmonic
analysis. Along with the Abel Prize and the Fields Medal, the Wolf Prize is considered one of the most prestigious
awards in mathematics.
7 Jidong Hou is Sr. Scientist, Research and Advanced Development at Natus Medical where he develops deep
learning-based signal and image processing algorithms for applications in neurology and ophthalmology as well as
hearing and balance. He was previously a DSP Algorithm Engineer at SleepIQ Labs and a Research Scientist at
Philips. He holds a PhD in Applied Science from W&M and was a Postdoctoral Fellow at U. Maryland School of
Medicine. While completing his PhD, he worked at Sonix, Inc. in Springfield, VA.

https://www.nytimes.com/2021/09/14/magazine/ingrid-daubechies.html
https://www.nytimes.com/2021/09/14/magazine/ingrid-daubechies.html
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Figure 10.2 A visual summary of the DWFP algorithm. A time-domain signal (a) from which a set of
wavelet coefficients is generated via the continuous wavelet transform (b). The coefficients are then
“thickly” sliced (c) and projected onto the time-scale plane, resulting in two-dimensional images, shown
(d) with white peaks and gray valleys.

resulting in an image containing “ridge” features that resemble fingerprints. The wavelet trans-
form coefficients can be rendered in an image similar to a spectrogram, except that the vertical axis
will be scale instead of frequency. These time-scale image representations can be quite helpful for
identifying subtle signal features that may not be resolvable via other time-frequency methods. As
I often say, it’s worked for everything we’ve tried it on.

In forming the fingerprints, the values of slice thickness and number of slices can be varied
to alter the appearance, as can changing which mother wavelet is used. In practice, the mother
wavelets used are often chosen based on preliminary analysis of a new set of signals as well as
experience with similar signals. In Figure 10.2, we’ve deliberately shown this process at a “reso-
lution” where the pixilated nature of the wavelet fingerprint is obvious. This is important because
each of the pixels is either black or white: it is a binary image. We sometimes do peaks and valleys
in white and gray, respectively, so technically that’s not a binary image, but still . . . .

The problem is thus transformed from a one-dimensional signal identification problem to a 2D
image recognition scenario. The binary matrix is easily stored and transferred, and is amenable to
edge computing implementations. There is also robustness to the method since different mother
wavelets emphasize different features in the signals.

The last piece of the DWFP technique is recognition of those binary image features that
correspond to some waveform features of interest. We’ve found that using simple-to-implement
metrics, like ridge counting in the 2D images, is often a helpful way to identify some features of
interest. Once a feature has been identified in the time-scale space, we know its arrival in the time
domain as well and we can then draw conclusions about the location based on our knowledge of
wave velocity.
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The inherent advantage of traditional TFRs is to transform a time-trace signal into a
two-dimensional image, which then allows for application of powerful image processing methods
to be brought to bear. False-color spectrogram images also happen to be visually appealing, but this
turns out to be somewhat of a disadvantage when the goal is to automatically identify the features
in the image that carry the information about the scatterer(s). High-resolution color imagery is
computationally expensive to both store and process, and segmentation is always problematic.
This latter issue is particularly difficult for scattering problems because it’s going to be something
about the shape of the signal(s) in the TFR image that we’re searching for automatically via
image processing algorithms. A binary image requires much less computer storage than does
a gray-scale or color image, and segmentation isn’t an issue at all because it’s a trivial matter
to decide between black and white. Binary fingerprint images can be formed from any TFR, of
course, although wavelets seem to work quite well for the wide variety of applications that we
have investigated.

As candidate TFRs are considered and binary fingerprint images are formed from them, the pri-
mary data engineering task is to downselect those that seem to best highlight the signal features of
interest while minimizing the clutter from signal features that aren’t of interest. We typically per-
form this in an interactive manner, since we’ve implemented the wavelet fingerprint method via
a GUI. This allows us to easily read in signals, perform denoising and windowing as needed, and
then form wavelet fingerprints from any of the dozens of mother wavelets, selecting a variety of
other parameters/options particular to the method. This works well because the human visual sys-
tem is naturally adapted to identifying features in this sort of binary imagery (think reading messy
handwriting) and we’re interested initially in naming features and describing qualitatively how the
fingerprint features change as the flaws or other physical features in the measurement setup are
varied. For example, a triangular feature might be the signature of a particular kind of flaw, with
the number of ridges indicating the severity of the flaw and the position in time corresponding
to the flaw’s physical location. A feature of interest might instead be a circle or an oval, with the
“circularity” or eccentricity and orientation as quantitative measures of severity. The point is that
once such features are identified it is a relatively simple matter to write algorithms to track them in
fingerprint images. Indeed, there is quite a large literature on fingerprint classification algorithms
dating back to the telegraph days when fingerprint images were manually converted to strings of
letters and numbers so they could be transmitted over large distances to attempt to identify criminal
suspects.

10.2 Wavelet Fingerprints Applied

Here are a few applications of this method that we’ve worked on. We’ve only recently begun using
the terminology “data engineering,” but that’s what we’ve been using the wavelet fingerprints for all
along. Recall that I decided to call this a chapter on inverse scattering, with the logic that extracting
sufficient features from wavelet fingerprints can allow one to use machine learning to actually solve
inverse scattering problems. Modeling and simulation of the forward scattering is key to the data
engineering aspects, of course.

10.2.1 Roof Fall Detection

One of the best field trips I’ve ever been on was a tour of a coal mine in Big Stone Gap, VA. It was
high coal, so we could walk around comfortably and it was surprisingly not claustrophobic. I was
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there with one of my engineers at the invitation of the state geologist, who I had an office next to
for some years when he was at the College. The tour was led by the mine superintendent, and we
were with two inspectors from the state regulatory agency (MME). We got to see an active mine
face up close and ask the miners questions. We even got to see the roof bolter get fussed at by MME
for going inby. The point of the visit was to understand the miners’ workflow in order to refine a
concept we were proposing to develop for preventing roof falls.

In a typical room-and-pillar coal mine, over the course of a few days, the geologic stresses redis-
tribute as material is removed. During that time there is an increased danger that small chunks of
the roof will fall, which can cause the issuance of a “fatal gram” to everybody on the email list. As
the mining proceeds, the roof bolter drills holes up into the roof of the mine and glues meter-long
roof bolts in place to prevent this. Our concept was to have the roof bolter drill an extra hole at
each intersection in the room-and-pillar grid and glue up in there a battery-powered accelerometer
module with wireless connectivity. Roof-fall precursor microseismic vibrations in the rock would
be picked up by the nearest few accelerometers and that information would be relayed by the adap-
tive mesh wireless network to a central processing unit back over by the microwave, coffee pot, and
porta-potty. A machine-learning system could then give warning to the miners to move back from
the active face before any collapse.

The problem we faced immediately was systematic denial that there might-could be any problem.
Nobody was willing to admit that they needed technologies to improve mine safety because that
would be an admission that their operations weren’t already safe enough. We had to refine our
argument by leading with the following. The continuous miner will be generating strong vibrations
that propagate out ahead into the mine face and if there are any abandoned works ahead of the
miner, those will backscatter those vibrations and our system will pick that up. Backscattering from
a void is different than backscattering from a water-filled void, so we can easily give warning before
breaking through into flooded abandoned works and thereby prevent fatal grams due to drowning.
Although coal mines are all carefully preplanned and mapped, everybody seems to take out a little
extra coal before shutting down and these days everybody is mining up in between abandoned
works.

The other refinement to our argument was that if miners happen to get trapped because of roof
falls, the automatically adaptable wireless network of accelerometer modules might be able to be
used by the trapped miners to communicate with the outside. All it would take is for the miners
to have a compatible radio system and to be able to connect to any surviving nearby node in the
network. Barring that, they could bang on the roof in Morse code and those very subtle vibrations
would be picked up by nearby accelerometer nodes and relay messages to the surface.

Once we had refined our arguments and gotten operators on board who were willing to let us
install a proof-of-concept system, we began looking for funding sources. Our geology department
was in a building named after an alum who happened to be a Virginia coal baron, but that didn’t
pan out. Federal mine safety funding comes via PHS, and we were all geared up to propose this
concept when research money rained from the sky as a part of the Obama Stimulus.

Figure 10.3 shows typical wavelet fingerprints from limestone mine data that proved the basic
concept. The features selected for classification included features specific to the shape of the wavelet
fingerprints as well as features related to spectral source parameters. The k-means clustering tech-
nique resolved significant events and motivated the calibration of the Roof Fall Index. Events with
a Roof Fall Index above 30 predict roof falls by as much as several hours or even a few days, which
can be used to mitigate mining hazards. We were all (shovel) ready to do this, but there didn’t seem
to be a single dollar of coal-mine safety funding in the stimulus because the Obama administration
had decided to kill off coal and hence coal mine safety wasn’t worth investing your tax dollars in.



10.2 Wavelet Fingerprints Applied 333

Blast

Electrical noise

Time (s)

1.1

20
40

1.15 1.2 1.25 1.3 1.35

1.1

20
40

1.15 1.2 1.25 1.3 1.35

1.3

20
40

1.35 1.4 1.45 1.5 1.55

1.3

20
40

1.35 1.4 1.45 1.5 1.55

Time (s)

Time (s)

Time (s)

No seismic activity

Fracture event

Figure 10.3 The top fingerprint, labeled as a fracture event, shows the kind of signals that indicate shear
stresses leading to roof falls. The second shows no visible event, whether seismic or noise. The third
fingerprint demonstrates the geophone response to electrical noise, and the bottom one shows a recorded
blast event in the mine. The event shown in the first plot demonstrates the kind of fingerprints that the
classification algorithm needs to identify and separate from the other three sample fingerprints, which are
still triggered by the system as significant but do not reflect seismic activity. Previous studies have shown
that rock fracture events produce a signal that is sharply defined, with large amplitude and short duration.
Spatial patterns in fingerprints can distinguish these events and highlight the ones most of interest.

Given that our preliminary results seemed to show that we were able to identify precursor signals
of roof fall events, we were rather disappointed that we didn’t then get training data to be able to
implement a real-time system that would save lives.8 It was a time when the sky was falling (eco-
nomically) and so I naturally wondered whether these methods could help find precurser signals in
financial data that indicated impending falls. We looked into it a bit, of course, and found that the
sorts of math academic econometrics folks (and presumably Wall Street quants) were doing were
rather rudimentary. We never actually pursued that, but we did begin to consider other sorts of time
series data streams that these methods might be applied to. For example, augmenting the analysis of
medical imaging with information extracted from text-based medical files using natural language
processing, something we’ve been wanting to be able to do since our prostate cancer detection
project in the late 1900s.

8 Dr. Crystal (Bertoncini) Acosta is currently Senior Director at Capital One and Head of US Card Fraud Modeling,
including over 20 internal models aimed at defending customers against fraud across customer management stages.
She was previously a Research Physicist at the Naval Research Laboratory, where she was Principal Investigator and
team lead for several research projects within the Tactical Electronic Warfare Division, but the Navy won’t let you
plug in your electric car at work and private industry pays quite a lot more. She holds a BA in Physics and
Mathematics from Vassar as well as MS and PhD in Physics from W&M working in the NDE Lab of Prof. Hinders.
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10.2.2 RF Scattering from a Food Truck

Next, consider a hip food truck that blocks the signal for your fancy new 5G smartphone that you’re
about to post about on social media. I don’t do social media and I don’t carry a smartphone, but if
I did, I’d be more likely to post about food safety issues rather than how photogenic my fish taco
was. A food truck only carries so much potable water, so I’m skeptical that the workers wash their
utensils enough. In restaurants, I always go wash my hands after I’m done touching their germy
laminated menus, and I peek into the kitchen on the way back to see if it looks clean. My wife is a
generous tipper.

We used pairs of software-defined radios (USRPs) to collect RF scattering data around the front
and sides of a campus food truck. One node was placed at the front of the vehicle 1.15 m from the
right front corner, while the other node was located on the right side of the truck 1.5 m from the right
front corner. Signals were collected using center frequencies of 2.5 and 4.0 GHz, with both USRPs
positioned about 0.5 m from the ground. The CAD model we created to simulate wave propaga-
tion in this environment consisted of a simplified geometry using the dimensions and panel angles
defining the actual vehicle, with hollow areas in the main body of the truck and front seats. The
corresponding simulations used between 25 and 30 GB of memory to store the 4 × 7 × 3 m com-
putational space and ran for nearly 60 hours each on a parallel cluster. Systematic simulations of
complex 3D scattering can often be used to develop data engineering approaches that intelligently
downselect features which are then fed into machine learning modules. Figure 10.4 shows a typical
case for that food truck, where the signal(s) of interest are buried in the noise in the time domain sig-
nal. We have found that wavelet fingerprints are quite useful for extracting signals of interest from
very noisy signals, and since the number of ridges in the fingerprints correspond to the amplitude
of the signal, we can use ridge count as a function of time to pull the signal out of the noise. Vari-
ous mother wavelets and then various geometric features in those fingerprints can be used to form
candidate feature vectors for machine learning. With a sufficient training data set, augmented by
simulations and insight from scattering analyses, the optimal combination of features can often be
determined.
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Figure 10.4 (Top) The time domain plot of a pulse in the received signal for the 10 GHz frequency
simulation with significant noise. A typical fingerprint generated for this segment of signal is shown directly
below the time domain plot, with the box outlining the area containing the pulse. Bottom is a plot of the
ridge count feature for fingerprint, showing that the areas containing a pulse are composed of more
complex fingerprint objects with a higher number of ridges.
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10.2.3 Time Domain Reflectometry

Although our work on guided waves has primarily been for structural health monitoring using
ultrasonics to ensure the integrity of aircraft structures and piping systems, we’ve also applied
our knowledge of elastodynamics to determine the need for tamping of rail beds of the robotic
container-stacking cranes at the Port of Virginia and transmitting sensor/image data sets through
the walls of sealed containers in order to detect problems with shipments en route. We’ve even
exploited the same knowledge of reflection/refraction at the boundary between water and ice floes
to design a communication scheme to alert distant stakeholders to the precise location of oil spilled
under arctic ice. I feel a little bad that I didn’t talk about electromagnetic or optical-guided waves,
though, so I’ll include a bit of that here.

“What did you do in the war, Grandpa?” is a question you may have once asked. Neither of mine
served in either World War. I wrote radar equations on the chalkboard during the first Gulf War; my
father was called up briefly during the Cuban Missle Crisis and may have gone briefly AWOL for the
birth of my older brother. Neither of those really count, though. I do have half a dozen ancestors who
fought on the winning side of the Civil War, and my wife and I each have a dozen ancestors who
fought in the Revolutionary War. She has one who was on the losing side, although that wasn’t
really his fault. His family were French Hugonout refugees in Holland and when he came of age
he was conscripted into the Army and sold to England. That’s how he ended up a drum major at
Cornwallis’ surrender at Yorktown. He was paroled as a POW by General Washington and then
apprenticed as a glove maker in Fredericksburg before moving to Ohio in the early 19th century.
A century before the American Revolution I have ancestors in New England who fought on both
sides of King Philip’s War, the deadliest war per capita in America.

I’m the grand-student of Julian Schwinger, so naturally, I was curious about what he did during
WWII. It turns out that the answer is waveguide scattering. He worked at the Radiation Lab at MIT.
Schwinger is recognized as one of the greatest physicists of the 20th century, responsible for much
of modern quantum field theory, including a variational approach, and the equations of motion
for quantum fields. Having developed the habit of working until late at night, he went further and
made the day/night switch more complete, working at night and sleeping during the day, a habit
he would carry throughout his career. During WWII, he would typically be arriving for work as
everybody else was leaving for the night, and vice versa. I always tell my own graduate students to
work whatever schedule makes them most productive, and since I typically arrive at the office quite
early in the morning, students and I cross paths like this at times. Iterating a report or manuscript
draft can be very efficient; if they click send before, they go to bed I will have done my edits before
they wake up, and vice versa. We do need to overlap some IRL, though.

Waveguide scattering turned out to be critical to the war effort because waveguides are how
the radar signal gets from the magnetron to the antenna, and that process needs to be optimized.
You can safely assume there is a huge literature9 on the subject that you can draw upon if you’ve
got a problem to solve involving Maxwell’s equations and waveguides. Don’t forget that Maxwell’s

9 Two classic texts that cover this are Collin, R.E. (1990). Field Theory of Guided Waves. Wiley and Felsen, L.B. and
Marcuvitz, N. (1994). Radiation and Scattering of Waves. Wiley. Earlier versions of these are often available for
download or second hand. I should warn you that this math is really mathy, and most RF engineers simply use
finite-element modeling these days because all modern FEM systems do multiphysics.

Leopold B. Felsen was born in Munich, Germany in 1924. He received the BEE, MEE, and DEE degrees from the
Polytechnic Institute of Brooklyn, NY, in 1948, 1950, and 1952, respectively, having emigrated to the United States in
1939 and served in the US Army during WWII. He remained with the Polytechnic until 1994, when he was granted
the status of University Professor Emeritus. I met him briefly when he was Professor of Aerospace and Mechanical
Engineering and Professor of Electrical and Computer Engineering at Boston University in a sort of
semi-retirement, which meant that he wanted to mentor young faculty rather than graduate students. Dr. Felsen
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equations apply from DC to light, and fiber optics are therefore electromagnetic waveguides. But
I’d like to talk about coaxial cables and time-domain reflectometry.

The goal is to determine the state of damaged wires in cases where the damage (flaw) causes
something other than a simple open or short circuit. Of particular interest are subtle flaws, such
as broken shielding, crushed sections, slightly cut or frayed conductor, dielectric damage, and so
on. These fault classes may be undetectable by conventional TDR, but wavelet fingerprints offer
a better way to extract the structure of information while having the added benefit of preserving
information about time so that if the cable is deemed faulty, the location of the fault along the cable
can be easily determined.

We collected systematic TDR data on coaxial cables of type RG58, using an Agilent 86100A TDR
oscilloscope in tests that damaged the shielding with increasing levels of severity. The impedance
discontinuity caused by a broken shield is inductive in nature with a characteristic positive pulse in
the TDR signal. Such flaw effects were compared to flaws caused by crushing the cable, again with
varying levels of severity. In contrast to the broken shield, a crush causes an impedance disconti-
nuity that is capacitive, with a characteristic downward pulse in the TDR. Data sets were collected
for flaws located at various locations over cables of three different lengths: 5-ft, 25-ft, and 50-ft.
Figure 10.5 shows some typical results, which were quite promising.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10.5 Wavelet fingerprints from TDR waveforms. The top fingerprint (a) is for an unflawed coaxial
cable, with (b)–(g) for increasing sizes of chafing flaws in the outer conductor. The dotted rectangle indicates
the location of that flaw, and the number of ridges in the triangular feature corresponds to its severity.

was the author or coauthor of over 350 papers and of several books, including the classic Radiation and Scattering of
Waves. His research interests encompassed wave propagation and diffraction in complex environments and in
various disciplines, high-frequency asymptotic, and short-pulse techniques, and phase-space methods with an
emphasis on wave-oriented data processing and imaging. His Poet’s Corner appeared in the IEEE AP-S Magazine
for more than 20 years. He died in 2005.
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10.2.4 Counterfeit Routers

The unhelpful dumbasses in IT just convinced my administration that it would be a good idea to
yank all the office phones and have everybody use MS Teams instead. They forgot to order headsets.
When people dial my office number it now immediately kicks over to vmail and any message left
there is transcribed and forwarded to my email spam folder where I may find it in a few days. I
don’t like to talk on the phone anyway, and I only use MS Teams if one of my sponsors wants to
chat that way. It does make it kind of hard for prospective employers to call me up and ask for a
reference for a student. It also makes it hard for people to call me up and give me money, which
happens surprisingly often.

For example, back in the day, I was sitting in my office and the phone rang. “Hi, my name’s Frank
and I’d like to come talk to you about counterfeit Cisco routers.” I responded, “I don’t really know
anything about that.” Frank said, “I read one of your papers and I think you can help me.” I flipped
to the next page on my desk calendar and said, “Would you like to come by sometime next week?”
“I want to come tomorrow,” said Frank.

So a strange guy, who I’m going to continue to call Frank, showed up in my office the next morn-
ing and told me about counterfeit Cisco routers. The basic idea is that in the global supply chain,
there’s no way to know where the various chips in a router (which the unhelpful dumbasses in IT
are about to insert into your secure network) came from. Malicious actors can (and apparently do)
swap out components with nominally identical ones which have some additional functionality you
certainly don’t want. Bad guys will apparently intercept your shipment, carefully open the package
and perform the chip switcheroo, seal things back up and doctor the shipping documents, and then
they are all up in your private business. As Frank was telling me this, I was rather skeptical, but
then, when the Wikileaks dump happened, there was a formerly super-secret PowerPoint slide of
exactly this happening. Yikes!

We agreed to start with a less terrifying, nonsecret application. Chips are sometimes recycled
(which seems good) except that now that new solder doesn’t have led in it (also good), the new
solder requires higher reflow temperatures. When chips are removed from old devices and reused
in new devices, if all the moisture isn’t carefully baked out of them, they can develop “popcorn”
delamination flaws which affect their reliability. Since high-frequency ultrasound is routinely used
to inspect microchip packaging, finding delaminations in chips seemed quite doable. The only
wrinkle was that Frank wanted a device that could be used on the loading dock before routers
were installed or even while routers were already installed in a rack. The chips had to be inspected
for delaminations without removing them from the board and immersing in a couplant bath.

Figure 10.6 shows the device that we designed, built, and demonstrated in a project that only
lasted several months. It worked quite well, and the wavelet fingerprint technique easily identified
features in the backscattered A-lines that indicated delaminations. The prototype was a deliverable
of the contract, so after we demonstrated it in the conference room of a generic office park north of
the DC beltway, they took it back to a part of the building where we weren’t allowed and we came
home. I was kind of glad to be done and out of there, and I live where The Farm is just across I64
from Williamsburg.

10.2.5 Bladder Distension Monitor

Figure 10.7 shows ultrasound A-lines and corresponding wavelet fingerprints for a prototype blad-
der distension monitor. John Companion had first built a prototype while at NASA, with prelim-
inary data provided by his co-workers as they used the Branch restroom. A key finding of that
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Figure 10.6 The 100 MHz ultrasonic pulse-echo instrument detects delaminations in chips using a tapered
quartz delay line and a custom stabilizer unit, which allows a user to spot-check across the area of a chip
while installed in a router. Wavelet fingerprints with and without delaminations are shown at the left. Note
the presence/absence of the gray feature at a depth of 160 samples.
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Figure 10.7 Typical ultrasound backscattering results for full (left) and empty (right) bladders where
wavelet fingerprints are used to isolate differences in the front-wall and back-wall signals from a human
bladder. Transducer is placed low on the abdomen and the backscatter is recorded before and after voiding.

preliminary research was a strong correlation between maximum bladder capacity and career pro-
gression, with the obvious conclusion that professional advancement requires sitting through long,
coffee-fueled meetings. The device was patented, but the licensee sat on the invention so as not
to displace their existing (highly profitable) product(s) from the marketplace. When that patent
lapsed, John revisited the project leveraging new ultrasonics technology and wavelet fingerprints
for improved data interpretation. The intended commercialization path targeted nursing homes,
so the bladder distension monitor would use WiFi to send a signal to the nursing station that a
patient will be needing assistance. Assisting patients to the restroom in time to not have to change
the bedding affects the economics and quality of care rather significantly.10

10 Slate magazine had a reporter test out various adult diapers (http://www.slate.com/id/2199722) with the
conclusion that the best adult diapers are from Europe. Apparently, European manufacturers don’t have to cater to
institutional purchasers’ demands (i.e. Medicare/Medicaid), so they’re more likely to sell on quality rather than cost.

http://www.slate.com/id/2199722
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10.2.6 RF Occlusion by Building

Machine learning is the modern terminology for what we’ve been trying to do all along, that is, mak-
ing sense of the complex signals in radar and sonar and medical ultrasound and structural health
monitoring. In some of the example applications earlier, we were able to identify fingerprint fea-
tures directly that distinguished different classes, for example, flaw vs. no flaw. In some cases, we
identify some number of candidate features and use the formal methods of machine learning to
downselect the feature vectors to use, using our knowledge of the situation to guide the learning of
the machine. Deep learning is fashionable right now and those sorts of black-box approaches are
effective if there is a sufficient volume and quality of training data. However, when we have appro-
priate physical and mathematical models of the scattering of the radar, sonar, lidar, ultrasound, etc.
from the materials, tissues, and/or structures of interest, it seems odd not to harness that hard-won
knowledge. Sometimes we’re able to draw on a deep literature developed over decades in order to
address a problem of current interest.

The higher frequencies used by 5G wireless systems mean that RF interaction with the built
environment will be more of an issue. Shorter propagation at these higher frequencies also leaves
open opportunities for cognitive radio approaches that take advantage of locally unused bandwidth.
Using pairs of USRPs, augmented with FDTD simulations, we have studied the subtleties of signals
near the corners of buildings. The key question is to be able to distinguish signal transients due to
occlusion by a building corner from signal transients due to starting/stopping a signal transmis-
sion. The problem requires isolating the beginning/ending portion of a signal, and then identifying
features, which are characteristic of the transient occlusion event(s). Scattering!

We used three-dimensional EM FDTD simulations to model signal propagation in different envi-
ronments for frequencies in the range from 2 to 5 GHz, which were compared using the dynamic
wavelet fingerprint technique to measurements made with a set of USRPs placed in similar sur-
roundings. These models, which characterized the interactions of RF signals with the landscape
and the built environment, took into account absorption, diffraction, reflection, refraction, multi-
path, and fading effects in a range of scenarios and were simulated with high-fidelity using a high
performance computing cluster.

In a systematic set of outdoor data collection, we positioned the USRPs on adjacent sides of a
building, placed 50 cm both from the ground and away from the wall. Datasets were collected every
25 cm starting at 1 m from the corner and continuing until the USRPs were each 2 m from the
corner, with transmissions at a center frequency first of 4 GHz and then of 5 GHz. The simulations
modeling the data-collection environments also used input signals modulated to center frequencies
of 4 or 5 GHz and ran for a total of 10,000 time steps, which corresponds to about 200 ns. The
computational space consisted of a 450 × 450 × 200 cm section of the exterior of a building with
20 cm thick walls set within a 550 × 550 × 200 cm grid, with the placements of the transmit and
receive nodes mirroring those in the physical signal propagation scenario as closely as possible.
Each simulation ran for 20–25 hours on our HPC cluster, using nearly 18 GB of memory to store
the simulation space.

After modeling situations in which the propagation of a signal is impacted by a scatterer mov-
ing into an environment, we also modeled scenarios where one of the nodes changes position in
relation to a feature in the environment. In the first simulation, the Tx node was set 2.0 m above
the ground and 1.5 m in from the corner of the side of a building. The receive node, at a height of
1.0 m and initially 1.0 m away from the Tx node on the same side of the building, gradually moves
away from the source, turns around the corner of the building, and proceeds to move along the
adjacent wall until it stops 3.5 m down from the corner. Every 0.25 m, the Rx node records a new
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Figure 10.8 Fingerprints of the pulse, demodulated from a 5 GHz center frequency, recorded at the Tx node
and at the Rx node for several positions around the corner of a building. The vertical axis shows the wavelet
scale, while the horizontal axis shows the time. (a) Fingerprints of the pulse transmitted at the source node,
(b) fingerprints of the signal recorded at Rx0, (c) fingerprints of the signal recorded at Rx1, (d) fingerprints of
the signal recorded at Rx2, (e) fingerprints of the signal recorded at Rx3, (f) fingerprints of the signal
recorded at Rx4, (g) fingerprints of the signal recorded at Rx5, (h) fingerprints of the signal recorded at Rx6,
(i) fingerprints of the signal recorded at Rx7, and (j) fingerprints of the signal recorded at Rx8.

pulse. Figure 10.8 shows fingerprints generated from the recorded signal at various positions for
simulations using pulses modulated to 5 GHz center frequency.

Since the dynamic wavelet fingerprint technique is indifferent to the overall amplitude of an
input signal, this method of analysis provided a natural conduit for comparison between the results
from our FDTD simulations and the signals recorded with the set of USRPs. We began our signal
analysis by testing several wavelet families including Daubechies, Coiflets, and Symlets for the
signal filtering and fingerprint generation stages.
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Once the signals were aligned in the fingerprint domain, we focused on performing an analysis of
the sets of fingerprints that extended beyond a cursory visual comparison of binary images. Using
image processing techniques, features relating to the shape, complexity, and area covered by the
fingerprints were calculated from each significant object in the sets of fingerprints and plotted as
a function of time. Prior to feature extraction, all fingerprints in the binary object were labeled as
individual connected objects. This was performed by categorizing as a single unit any connected
components whose centers of mass differed by less than a set threshold, since in many cases, the
connected object function in MATLAB identifies each ridge of a fingerprint as a distinct object.

After extracting features from the set of fingerprints generated from each pulse recorded in a
particular scattering environment, we compared plots of the feature values related to the USRP
data to those related to the FDTD results. For the data recorded with the USRPs, since each of the
received signals contained approximately 200–300 transmission events, the plotted feature values
reflect the average over all the sets of fingerprints at each time step. The plotted average feature
values for the FDTD results are obtained from the sets of fingerprints created from the several
pulses transmitted within each simulation scenario. The vast majority of the features were in very
good agreement across the physical signals and the simulated signals for the various propagation
environments, with some of the most closely correlated features between the data sets being those
related abstractly to the breadth of the frequency content of the signals.

Analysis of the signals using the wavelet fingerprint method allowed us to obtain information
about the received signal in greater detail than we would have been able to gather from a simple
FFT, and provided a conduit for direct comparison between signals of significantly different ampli-
tudes in the time domain. After verifying in several scenarios that the fingerprints generated from
measured signals and the simulated signals contained the same significant features, we simulated
scenarios to predict signal reception in scattering environments which would be likely to induce
hidden node problems. These simulations used some of the lower mmWave frequencies under
consideration for 5G and examined the frequency dependency of environments and the potential
limitations of utilizing mmWave bands.

10.3 Conclusions

For a wide variety of applications, we have found time-domain signal processing to be relatively
inaccurate compared to 2D techniques. In particular, we favor joint time-frequency and time-scale
transforms, which convert the 1D time trace echoes into 2D representations. The best-known
example of this family of techniques is the “spectrogram,” which computes an FFT inside a sliding
window to get a 2D plot that shows both the frequency content of the reflection and how that
changes over time. The goal is to find the optimal time-frequency kernel for the particular signals
of interest (it’s almost never the spectrogram), so that artifacts are minimized while features of
interest are enhanced. Similarly, a wavelet transform can be constructed from a variety of mother
wavelets to give a scale vs. time 2D representation. One can then do a 2D version of template
matching or cross correlation to compare one or many of these 2D parameter images with those
stored in a library.

Two decades ago we implemented a dynamic wavelet fnger print (DWFP) algorithm to interpret
echoes from an ultrasonographic periodontal probe, extract multimode waveform properties from
a guided wave tomography system, and identify deeply buried delaminations in microchip packag-
ing via acoustic microscopy. We found that time-domain processing was not accurate enough for
these purposes, but by performing a CWT on the A-lines and then a simple contouring operation
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on the resulting 2D data maps we obtain 2D black and white images that look remarkably like fin-
gerprints. Comparing binary (black and white) images to templates allows us to draw on optical
character recognition technology, of course, but our real goal is to make use of the sorts of extensive
fingerprint classification systems that were developed in the early 20th century.11 Although those
systems eventually became unwieldy due to the inability to cross check larger and larger databases
by hand, they did result in a variety of classification schemes that may be straightforward to utilize
now with machine learning. The schemes turned fingerprint images into strings of numbers and
letters, which could be written down on a card and carried, or sent via letter or telegraph. Finger-
print (and facial) identification technology is currently advancing rapidly12 with some of the most
successful algorithms operating by identifying the relative coordinates of characteristic features
rather than by comparing one image to another in the sort of privacy-invasive database tyrants
all love.

Here’s a quote by Bruce Thompson13 in Volume I of the Review of Progress in Quantitative Eval-
uation, p. 27: “A second use of the forward scattering models is through the empirically based,
adaptive learning techniques . . . . In this case, the scattering models are used to produce ‘theoreti-
cal data’ which serves as a training set to develop empirical relationships between the experimental
observables and the flaw parameters. In this case, a detailed reconstruction of the flaw shape is not
obtained, but rather specific parameters are estimated. The successful application of this approach
requires that the training set of flaws contain representatives of all flaw types and sizes to be encoun-
tered in practice.” That was written in 1981.

Twenty years later, in 2001 or so, here’s what my sense of the state-of-the art was and where
we were heading. You can judge for yourself how precient I may or may not have been. These
paragraphs are from a proposal that wasn’t funded, but sometimes if you’re thinking a bit too far
ahead, your proposal won’t be well received. At least that’s what I tell myself when reviewers hate
something I’ve proposed.

Until recently, ultrasound transducers were almost entirely PZT and similar crystals, with appro-
priate backing layers, matching layers, and discrete leads attached to opposite (metallized) faces of
the crystal. Arrays of up to 128 elements were made by dicing the crystals and/or patterning the met-
allization layer. Although 1.5D arrays are now common on high-end medical ultrasound systems
and a few true 2D arrays are in the clinical testing stage, this is still the same technology that has
been around (and successful) for decades. New chip-based technologies of several types that offer
very large arrays of ultrasonic elements are now being developed. It is reasonable to expect them
to track pretty much the IR sensor-array development path since there is no consumer electronics
killer app that would stimulate the ever-accelerating growth paradigm. These sensor packages are
sometimes set up to provide real-time video imagery (as in medical imaging) or they can be fully
incorporated into computer-controlled data acquisition and processing (as in NDT), but either way,
time-evolving digital imagery often makes its way into the computer. Two things distinguish the

11 Fingerprints found widespread use because the sorts of body-measurement systems being employed in the days
before mugshots were both inaccurate and expensive (Cole, S.A. (2009). Suspect Identities: A History of
Fingerprinting and Criminal Identification. Harvard University Press). Plus they were invasive enough that it was
considered bad manners to use them on prostitutes; fingerprints preserved the modesty of prostitutes.
12 https://www.techdirt.com/2023/01/04/tsas-opt-in-facial-recognition-program-doesnt-seem-all-that-optional-
in-real-life.
13 R. Bruce Thompson was a world leader in many aspects of nondestructive evaluation, including his pioneering
work on the development of model-assisted techniques for determining the probability of detection of flaws in
materials that could lead to failure. Thompson earned his PhD in applied physics from Stanford University in 1971.
He then joined the staff at Rockwell International Science Center, becoming a group leader before leaving for Iowa
State. He served in many leadership and advisory roles both within and outside Iowa State, including director of the
Center for NDE from 1997 until his death in 2011.

https://www.techdirt.com/2023/01/04/tsas-opt-in-facial-recognition-program-doesnt-seem-all-that-optional-in-real-life
https://www.techdirt.com/2023/01/04/tsas-opt-in-facial-recognition-program-doesnt-seem-all-that-optional-in-real-life
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ultrasound situation from either visible or IR imagery. The first is that ultrasound can provide 3D
data plus time (=4D). In pulse-echo, the arrival delays of the echoes give depth information in a
quantitative way. IR and visible typically show us 2D only. Even when stereoscopic systems are
used to give binocular 3D images, what we see are 2D surfaces only. Ultrasound “sees through”
opaque media and so is naturally 3D in a quite new way for those used to video taken either in the
IR or visible. The second distinguishing point is that it’s usually not obvious how ultrasound data
should best be rendered. Image segmentation is a real problem in ultrasound. Today it is usually
a labor-intensive manual process done after the data is acquired. Medical 3D ultrasound systems
provide “electronic scalpels” that allow the user to trim away unwanted features to be able to ren-
der the needed views of the anatomy of interest. The simplest rendering trick is to rectify the echo
trains and then assign grayscale values directly. That approach discards quite a lot of useful infor-
mation, and there are a number of ways to extract parameters from the waveforms before rendering
“parameter images.” For example, one can gate (window) short time segments and then pick out
the peak amplitude in each. Changing the lengths of the gates used changes pretty significantly the
appearance of the resulting C-scans. Instead of peak detecting in each window one could FFT the
windowed signal to make a different type of image. Sliding the window continuously while record-
ing the FFT gives a spectrogram representation that illustrates the frequency content variation in
lateral space and depth. A spectrogram at each point in 3D space is a 4D data set, so often one
will integrate each windowed spectrum to render an “integrated backscatter” parameter image. Of
course, which representation is appropriate depends on the application of interest, but the point
is that it’s not at all obvious a priori what to do with the huge amount of data chip-based ultra-
sonic array output. No matter what “parameter image” one renders, showing it to a human is an
unnecessary limit on its usefulness.

Fortunately, by sending the data through AI modules instead of rendering it for display, one is
often able to “make the diagnosis” automatically in the sense that the necessary smarts are “in the
box” itself. We teach the computer to search for the characteristic diagnostic features in the data
that indicate high suspicion for pathology in tissues or flaws in structures. Of course, in practice,
the computer is “slaved” to a physician or engineer “master” and merely reports suspicious areas
for closer inspection by the human expert, but it’s a small subsequent step to fully autonomous
process control using high-volume, dense 3D sensor data from visible, IR and ultrasound sensor
arrays. The limiting case is a subsystem that is able to continuously interrogate its surrounding and
“decide” for itself what’s going on around it. It turns out that the same things necessary to build
a useful household robot to clean up the playroom (or dangerous waste site) and do the yardwork
are critical to process control automation and fail safe NDT and real-time medical screening. The
computer hardware and sensor arrays are improving rapidly. What is needed is attention paid to
physics-based modeling and interpretation algorithms to effectively deal with the data streams and
make the assessments on the fly. The key enabling step to automatic interpretation seems to be
tomographic reconstruction because it outputs cross-sectional maps that are readily correlated to
the physical properties of interest.

The goal here is to automate the interpretation of NDE inspection and remote sensing data for
a variety of applications. We feel that it is necessary to use multiple sensing modalities in order
to be able to make the AI interpretation algorithms robust and useful for most real-world applica-
tions, and we have found that tomographic reconstruction techniques often provide the necessary
correlation between the recorded data and the physical properties of interest.

I think my predictions held up pretty well, but nobody really foresaw what was going to happen
with machine learning in the early 2020s. These days, TensorFlow makes it easy for beginners and
experts alike to create machine learning models. A common situation is when a couple of n00bs
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have a modest data set which they use to train a TensorFlow model which works quite well. They
sometimes rush to publish their results without testing their model on a related, but distinct, set
of data where the results are typically a coin flip. That’s because most people underestimate by
an order of magnitude (or three) the amount of training data that’s going to be needed. If you have
insufficient training data, your machine learning system isn’t learning, it’s just rememberizing your
data. For most applications, you will be at least somewhat data starved, which is why scattering
models and numerical simulations of scattering behavior can be so important. They can help you
to understand which parameters are important for the scattering behavior and then enable you
to explore the range of scattering behavior. In some cases, models and simulations can be used to
augment your training data set. In almost all cases, synthetic test data sets can be formed from
scattering models and simulations that allow you to test your machine learning system because
you have a good understanding of what the output should be.

Since TensorFlow and the like are designed to deal with image data, wavelet fingerprints can feed
into them pretty easily. Because scattering behavior is so strongly frequency dependent, a common
approach for time-domain signals is to form spectrograms and feel those images into the ML sys-
tem. Go ahead and try that as a first cut. If it works your problem is probably too easy. My question
in such cases is, “Why would you expect a boxcar FFT to be the optimal time-frequency represen-
tation?” It almost never is, but there are innumerable TFRs so you might as well try some of them
too. Then consider various wavelet transforms, which can be used to form time-scale images, which
are in some ways equivalent to spectrograms. If you’ve got the computational horsepower and data
storage necessary to do it, try all the time-frequency and time-scale representations you can think
of and then let the machine learning system downselect the best one(s) or combos of them for your
problem.

Part of what we like about the wavelet fingerprint is that they are presegmented, binary images.
That both minimizes computer storage requirements compared to full-color images like spectro-
grams and it makes it straightforward to identify shapes and numerous spatial properties in them.
In addition, the human eye is naturally suited to identifying shapes in this kind of black-and-white
imagery. The human brain sees patterns even when they’re not there, thanks to our distant ances-
tors who thought they saw a saber-tooth tiger crouching behind a bush when there wasn’t one.
Ancient humans who didn’t notice the tiger behind the bush didn’t pass on their genes, of course.
When we’re starting a new application with a new class of signals, we typically try various mother
wavelets to see which ones look promising. That helps to narrow things down a bit before we start
feeding things into pattern classification systems.

We’ve recently started forming color images from wavelet fingerprints. In a structural health
monitoring application, we’re using three-axis accelerometers to record vibrations in rail-mounted
robotic cranes to detect flaws in rails and wheels, dips in the roadbed, etc. We first form traditional
binary (black & white) wavelet fingerprints from the output of each of the three accelerometer
axes. We then form RGB images by coloring the three fingerprints (as R, B, and G) and those we
can feed directly into things like TensorFlow. First, however, we collected an obscene amount of
accelerometer data (7 GB per day) over the course of about a year in known-good and known-bad
and after-repair situations. We’re pretty confident that we’re not starved for data, but with small
data collection units installed on the cranes, we can collect as much data as we could ever want.

In 1912 when the unsinkable Titanic hit an iceberg at night in a fog, Sir Hiram Maxim lamented
whether science had reached the end of its tether. Nope. In the last 112+ years, an amazing
amount of science and technology has ensued to actually do what Maxim sketched in Figure 1.1.
I’ve made some attempts throughout to highlight the lives of many notables I’ve known personally,
or by reputation, who spent their professional lifetimes developing the scattering methods we’ve
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discussed. I ended up doing scattering by accident. I mean that literally because if the space
shuttle Challenger hadn’t exploded in 1986, I wouldn’t have ended up doing radar scattering in
the Air Force just before the Cold War ended or almost doing seismology, but then switching to
ultrasonic nondestructive evaluation because the Geophysics Lab was a tenant organization at
Hanscom, AFB. The Challenger explosion also led to a closer connection between NASA Langley
and William & Mary, which was the impetus for the faculty position that I’ve held for 62 semesters
and counting. Life is funny like that.

Lifequakes happen all the time, although Loomis seeing the Great Depression coming is pretty
unusual. We all just lived through the COVID-19 pandemic, which nobody saw coming and was
particularly devastating for the elderly. If you were paying close-enough attention, you may have
noticed that many of the notables I’ve highlighted died during those years. You can honor them
and their contributions to human knowledge by building on their work to solve new problems in
the coming decades. None of us know quite what those new problems are going to be, but we can
take heart that the math and physics we’ve been discussing here will carry over directly. Knowing
what’s already been solved and how to adapt those known solutions to new problems is always
going to be valuable.
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